The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and...In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.展开更多
In tomographic statics seismic data processing, it 1s crucial to cletermme an optimum base for a near-surface model. In this paper, we consider near-surface model base determination as a global optimum problem. Given ...In tomographic statics seismic data processing, it 1s crucial to cletermme an optimum base for a near-surface model. In this paper, we consider near-surface model base determination as a global optimum problem. Given information from uphole shooting and the first-arrival times from a surface seismic survey, we present a near-surface velocity model construction method based on a Monte-Carlo sampling scheme using a layered equivalent medium assumption. Compared with traditional least-squares first-arrival tomography, this scheme can delineate a clearer, weathering-layer base, resulting in a better implementation of damming correction. Examples using synthetic and field data are used to demonstrate the effectiveness of the proposed scheme.展开更多
As one type of spatially offset Raman spectroscopy(SORS), inverse SORS is particularly suited to in vivo biomedical measurements due to its ring-shaped illumination scheme. To explain inhomogeneous Raman scattering du...As one type of spatially offset Raman spectroscopy(SORS), inverse SORS is particularly suited to in vivo biomedical measurements due to its ring-shaped illumination scheme. To explain inhomogeneous Raman scattering during in vivo inverse SORS measurements, the light–tissue interactions when excitation and regenerated Raman photons propagate in skin tissue were studied using Monte Carlo simulation. An eight-layered skin model was first built based on the latest transmission parameters. Then, an open-source platform, Monte Carlo e Xtreme(MCX), was adapted to study the distribution of 785 nm excitation photons inside the model with an inverse spatially shifted annular beam. The excitation photons were converted to emission photons by an inverse distribution method based on excitation flux with spatial offsets Δs of 1 mm, 2 mm, 3 mm and 5 mm. The intrinsic Raman spectra from separated skin layers were measured by continuous linear scanning to improve the simulation accuracy. The obtained results explain why the spectral detection depth gradually increases with increasing spatial offset, and address how the intrinsic Raman spectrum from deep skin layers is distorted by the reabsorption and scattering of the superficial tissue constituents. Meanwhile, it is demonstrated that the spectral contribution from subcutaneous fat will be improved when the offset increases to 5 mm, and the highest detection efficiency for dermal layer spectral detection could be achieved when Δs = 2 mm. Reasonably good matching between the calculated spectrum and the measured in vivo inverse SORS was achieved, thus demonstrating great utility of our modeling method and an approach to help understand the clinical measurements.展开更多
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t...A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).展开更多
To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and ho...To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.展开更多
Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle e...Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle economic decision-making model.Monte Carlo simulation was used in demonstration cases,modeling analysis of water-saving projects in conservation-minded and traditional buildings verified rationality and practicability of this model and simulation method.It was to provide a referential and operable method for the decision-making of conservation-minded construction projects,as well as a scientific approach and theoretic basis for the precise decision-making of government organs,decision-making departments and developers.展开更多
Different from the usual full counting statistics theoretical work that focuses on the higher order cumulants computation by using cumulant generating function in electrical structures, Monte Carlo simulation of singl...Different from the usual full counting statistics theoretical work that focuses on the higher order cumulants computation by using cumulant generating function in electrical structures, Monte Carlo simulation of single-barrier structure is performed to obtain time series for two types of widely applicable exclusion models, counter-flows model, and tunnel model. With high-order spectrum analysis of Matlab, the validation of Monte Carlo methods is shown through the extracted first four cumulants from the time series, which are in agreement with those from cumulant generating function. After the comparison between the counter-flows model and the tunnel model in a single barrier structure, it is found that the essential difference between them consists in the strictly holding of Pauli principle in the former and in the statistical consideration of Pauli principle in the latter.展开更多
Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertain...Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertainty, a new method which is the coupling of Finite Difference Method and Markov Chain Monte Carlo is developed to identify the parameters of water quality model in this paper. Taking a certain long distance open channel as an example, the effects to the results of parameters identification with different noise are discussed under steady and un-steady non-uniform flow scenarios. And also this proposed method is compared with finite difference method and Nelder Mead Simplex. The results show that it can give better results by the new method. It has good noise resistance and provides a new way to identify water quality model parameters.展开更多
With the help of an improvement Monte Carlo method, the Berezinskii-Kosterlitz-Thouless phase transition arising in two-dimensional planar rotator model with weak Dzyaloshinsky-Moriya (DM) interaction is investigate...With the help of an improvement Monte Carlo method, the Berezinskii-Kosterlitz-Thouless phase transition arising in two-dimensional planar rotator model with weak Dzyaloshinsky-Moriya (DM) interaction is investigated. The effects of the DM interaction on specific heat, susceptibility, and magnetization are simulated. The critical temperature of transitions is determined by the so-called Binder cumulant and the susceptibility of finite-size scaling. We find that the chiral Z2 symmetry reduced by the DM interactions plays an important role in a two-dimensional XY spin system, typically, the critical temperature is sensitive to weak DM spin couplings.展开更多
Inverse geochemical modeling of groundwater entails identifying a set of geochemical reactions which can explain observed changes in water chemistry between two samples that are spatially related in some sense, such a...Inverse geochemical modeling of groundwater entails identifying a set of geochemical reactions which can explain observed changes in water chemistry between two samples that are spatially related in some sense, such as two points along a flow pathway. A common inversion approach is to solve a set of simultaneous mass and electron balance equations involving water-rock and oxidation-reduction reactions that are consistent with the changes in concentrations of various aqueous components. However, this mass-balance approach does not test the thermodynamic favorability of the resulting model and provides limited insight into the model uncertainties. In this context, a Monte Carlo-based forward-inverse modeling method is proposed that generates probability distributions for model parameters which best match the observed data using the Metro-polis-Hastings search strategy. The forward model is based on the well-vetted PHREEQC geochemical model. The proposed modeling approach is applied to two test applications, one involving an inverse modeling example supplied with the PHREEQC code that entails groundwater interactions with a granitic rock mineral assemblage, and the other concerning the impact of fuel hydrocarbon bioattenuation on groundwater chemistry. In both examples, the forward-inverse approach is able to approximately reproduce observed water quality changes invoking mass transfer reactions that are all thermodynamically favorable.展开更多
Monte Carlo simulation of two dimensional 4 state Potts model has been carried out in microcanonical ensemble. The simulations were done on a 30 × 30 system with periodic boundary conditions. The temperature depe...Monte Carlo simulation of two dimensional 4 state Potts model has been carried out in microcanonical ensemble. The simulations were done on a 30 × 30 system with periodic boundary conditions. The temperature dependence of energy and order parameter has been calculated. The transition in 4-state Potts model is concluded to be first-order in nature. The transition temperature and latent heat of the first-order transition have been found to be 0.92 and 0.18, respectively.展开更多
The energy loss during jet quenching due to the existence of Quark Gluon Plasma (QGP) is calculated by Optical Glaube Monte Carlo model with data collected by ATLAS Collaboration using the LHC detector. An energy loss...The energy loss during jet quenching due to the existence of Quark Gluon Plasma (QGP) is calculated by Optical Glaube Monte Carlo model with data collected by ATLAS Collaboration using the LHC detector. An energy loss formula for this situation was modeled and took the form . The nuclear modification factor, RAA, for jets in a 208Pb + 208Pb nucleus collision with rapidity interval of ∣у∣=2.8 and the initial transverse momentum of 50 GeV ≤ pT ≤ 1000 GeV, are compared with various data plots produced by ATLAS Collaboration. RAA results are plotted in different centrality bins, which are defined by the distribution of number of participating nucleons Npart. The RAA value was found to slowly increase at lower transverse momenta and flatten out at higher transverse momenta. The model’s theoretical calculation results turned out to be similar to the plots produced by the ATLAS Collaboration using data from the LHC with small differences for higher systematic uncertainty events.展开更多
Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have be...Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.展开更多
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.
基金funded by the National Science VIP specialized project of China(Grant No.2011ZX05025-001-03)by the National Science Foundation of China(Grant No.41274117)
文摘In tomographic statics seismic data processing, it 1s crucial to cletermme an optimum base for a near-surface model. In this paper, we consider near-surface model base determination as a global optimum problem. Given information from uphole shooting and the first-arrival times from a surface seismic survey, we present a near-surface velocity model construction method based on a Monte-Carlo sampling scheme using a layered equivalent medium assumption. Compared with traditional least-squares first-arrival tomography, this scheme can delineate a clearer, weathering-layer base, resulting in a better implementation of damming correction. Examples using synthetic and field data are used to demonstrate the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61911530695)the Key Research and Development Project of Shaanxi Province, China (Grant No. 2023-YBSF-671)。
文摘As one type of spatially offset Raman spectroscopy(SORS), inverse SORS is particularly suited to in vivo biomedical measurements due to its ring-shaped illumination scheme. To explain inhomogeneous Raman scattering during in vivo inverse SORS measurements, the light–tissue interactions when excitation and regenerated Raman photons propagate in skin tissue were studied using Monte Carlo simulation. An eight-layered skin model was first built based on the latest transmission parameters. Then, an open-source platform, Monte Carlo e Xtreme(MCX), was adapted to study the distribution of 785 nm excitation photons inside the model with an inverse spatially shifted annular beam. The excitation photons were converted to emission photons by an inverse distribution method based on excitation flux with spatial offsets Δs of 1 mm, 2 mm, 3 mm and 5 mm. The intrinsic Raman spectra from separated skin layers were measured by continuous linear scanning to improve the simulation accuracy. The obtained results explain why the spectral detection depth gradually increases with increasing spatial offset, and address how the intrinsic Raman spectrum from deep skin layers is distorted by the reabsorption and scattering of the superficial tissue constituents. Meanwhile, it is demonstrated that the spectral contribution from subcutaneous fat will be improved when the offset increases to 5 mm, and the highest detection efficiency for dermal layer spectral detection could be achieved when Δs = 2 mm. Reasonably good matching between the calculated spectrum and the measured in vivo inverse SORS was achieved, thus demonstrating great utility of our modeling method and an approach to help understand the clinical measurements.
基金Supported by the National Key Scientific Instrument and Equipment Development Projects of China under Grant No 81127901the National Natural Science Foundation of China under Grant Nos 61372017 and 30970828
文摘A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071).
文摘To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.
基金Supported by Foundation of Zhejiang Provincial Bureau of Construction:Economical Efficiency Study of Water-saving and Intermediate Water Recycling for Conservation-minded Buildings(0809)~~
文摘Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle economic decision-making model.Monte Carlo simulation was used in demonstration cases,modeling analysis of water-saving projects in conservation-minded and traditional buildings verified rationality and practicability of this model and simulation method.It was to provide a referential and operable method for the decision-making of conservation-minded construction projects,as well as a scientific approach and theoretic basis for the precise decision-making of government organs,decision-making departments and developers.
基金supported by the National Basic Research Program of China (973 Program, No. 2013CB035904)the Innovative Research Groups of the National Natural Science Foundation of China (No. 51321065)the National Natural Science Foundation of China (No. 51439005)
基金Project supported by the National Natural Science Foundation of China(Grant No.60676053)Applied Material in Xi'an Innovation Funds(Grant No.XA-AM-200603)
文摘Different from the usual full counting statistics theoretical work that focuses on the higher order cumulants computation by using cumulant generating function in electrical structures, Monte Carlo simulation of single-barrier structure is performed to obtain time series for two types of widely applicable exclusion models, counter-flows model, and tunnel model. With high-order spectrum analysis of Matlab, the validation of Monte Carlo methods is shown through the extracted first four cumulants from the time series, which are in agreement with those from cumulant generating function. After the comparison between the counter-flows model and the tunnel model in a single barrier structure, it is found that the essential difference between them consists in the strictly holding of Pauli principle in the former and in the statistical consideration of Pauli principle in the latter.
文摘Identification results of water quality model parameter directly affect the accuracy of water quality numerical simulation. To overcome the difficulty of parameter identification caused by the measurement’s uncertainty, a new method which is the coupling of Finite Difference Method and Markov Chain Monte Carlo is developed to identify the parameters of water quality model in this paper. Taking a certain long distance open channel as an example, the effects to the results of parameters identification with different noise are discussed under steady and un-steady non-uniform flow scenarios. And also this proposed method is compared with finite difference method and Nelder Mead Simplex. The results show that it can give better results by the new method. It has good noise resistance and provides a new way to identify water quality model parameters.
基金The project supported by Natural Science Foundation of Hubei Province of China under Grant No. 2003ABA004. We are indebted to professor Wang Jian-Sheng for his stimulating discussions.
文摘With the help of an improvement Monte Carlo method, the Berezinskii-Kosterlitz-Thouless phase transition arising in two-dimensional planar rotator model with weak Dzyaloshinsky-Moriya (DM) interaction is investigated. The effects of the DM interaction on specific heat, susceptibility, and magnetization are simulated. The critical temperature of transitions is determined by the so-called Binder cumulant and the susceptibility of finite-size scaling. We find that the chiral Z2 symmetry reduced by the DM interactions plays an important role in a two-dimensional XY spin system, typically, the critical temperature is sensitive to weak DM spin couplings.
文摘Inverse geochemical modeling of groundwater entails identifying a set of geochemical reactions which can explain observed changes in water chemistry between two samples that are spatially related in some sense, such as two points along a flow pathway. A common inversion approach is to solve a set of simultaneous mass and electron balance equations involving water-rock and oxidation-reduction reactions that are consistent with the changes in concentrations of various aqueous components. However, this mass-balance approach does not test the thermodynamic favorability of the resulting model and provides limited insight into the model uncertainties. In this context, a Monte Carlo-based forward-inverse modeling method is proposed that generates probability distributions for model parameters which best match the observed data using the Metro-polis-Hastings search strategy. The forward model is based on the well-vetted PHREEQC geochemical model. The proposed modeling approach is applied to two test applications, one involving an inverse modeling example supplied with the PHREEQC code that entails groundwater interactions with a granitic rock mineral assemblage, and the other concerning the impact of fuel hydrocarbon bioattenuation on groundwater chemistry. In both examples, the forward-inverse approach is able to approximately reproduce observed water quality changes invoking mass transfer reactions that are all thermodynamically favorable.
文摘Monte Carlo simulation of two dimensional 4 state Potts model has been carried out in microcanonical ensemble. The simulations were done on a 30 × 30 system with periodic boundary conditions. The temperature dependence of energy and order parameter has been calculated. The transition in 4-state Potts model is concluded to be first-order in nature. The transition temperature and latent heat of the first-order transition have been found to be 0.92 and 0.18, respectively.
文摘The energy loss during jet quenching due to the existence of Quark Gluon Plasma (QGP) is calculated by Optical Glaube Monte Carlo model with data collected by ATLAS Collaboration using the LHC detector. An energy loss formula for this situation was modeled and took the form . The nuclear modification factor, RAA, for jets in a 208Pb + 208Pb nucleus collision with rapidity interval of ∣у∣=2.8 and the initial transverse momentum of 50 GeV ≤ pT ≤ 1000 GeV, are compared with various data plots produced by ATLAS Collaboration. RAA results are plotted in different centrality bins, which are defined by the distribution of number of participating nucleons Npart. The RAA value was found to slowly increase at lower transverse momenta and flatten out at higher transverse momenta. The model’s theoretical calculation results turned out to be similar to the plots produced by the ATLAS Collaboration using data from the LHC with small differences for higher systematic uncertainty events.
基金The authors thank Qingming Luo's group for providing VCH dataset.This research was supported by the Fundamental Research Funds for the Central Universities (grant No.ZYGX2012J114)the National Natural Science Foundation of China (grant No.61308114)the Specialized Research Fund for the Doctoral Program of Higher Education (grant No.20130185120024).
文摘Modeling Light propagation within human head to deduce spatial sensitivity distribution(SSD)is important for Near-infrared spectroscopy(NIRS)/imaging(NIRI)and diffuse correlation tomography.Lots of head models have been used on this issue,including layered head model,artificial simplified head model,MRI slices described head model,and visible human head model.Hereinto,visible Chinese human(VCH)head model is considered to be a most faithful presentation of anatomical structure,and has been highlighted to be employed in modeling light propagation.However,it is not practical for all researchers to use VCH head models and actually increasing number of people are using magnet resonance imaging(MRI)head models.Here,all the above head models were simulated and compared,and we focused on the effect of using di®erent head models on predictions of SSD.Our results were in line with the previous reports on the effect of cerebral cortex folding geometry.Moreover,the in fluence on SSD increases with thefidelity of head models.And surprisingly,the SSD percentages in scalp and gray matter(region of interest)in MRI head model were found to be 80%and 125%higher than in VCH head model.MRI head models induced nonignorable discrepancy in SSD estimation when compared with VCH head model.This study,as we believe,is the first to focus on comparison among full serials of head model on estimating SSD,and provided quantitative evidence for MRI head model users to calibrate their SSD estimation.