Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 med...Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.展开更多
Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlu...Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.展开更多
Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these f...Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these factors. Although intensive studies have been conducted to quantify biomass factors, each study typically covers a limited geographic area. The goal of this study was to employ a meta-analysis approach to develop regional bio- mass factors for Quercus mongolica forests in South Korea. The biomass factors of interest were biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF) and root-to-shoot ratio (RSR). Our objectives were to select probability density functions (PDFs) that best fitted the three biomass factors and to quantify their means and uncertainties. A total of 12 scientific publications were selected as data sources based on a set of criteria. Fromthese publications we chose 52 study sites spread out across South Korea. The statistical model for the meta- analysis was a multilevel model with publication (data source) as the nesting factor specified under the Bayesian framework. Gamma, Log-normal and Weibull PDFs were evaluated. The Log-normal PDF yielded the best quanti- tative and qualitative fit for the three biomass factors. However, a poor fit of the PDF to the long right tail of observed BEF and RSR distributions was apparent. The median posterior estimates for means and 95 % credible intervals for BCEF, BEF and RSR across all 12 publica- tions were 1.016 (0.800-1.299), 1.414 (1.304-1.560) and 0.260 (0.200-0.335), respectively. The Log-normal PDF proved useful for estimating carbon stock of Q. mongolica forests on a regional scale and for uncertainty analysis based on Monte Carlo simulation.展开更多
A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC...A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC)simulation and Gibbs sampling have been used to estimate the parameters in the SV model.Thirdly,in this model,CVaR calculation is immediate.In this way,the SV-CVaR model overcomes the drawbacks of the generalized autoregressive conditional heteroscedasticity value at risk(GARCH-VaR)model.Empirical study suggests that this model is better than GARCH-VaR model in this field.展开更多
Based on Monte Carlo simulations,the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance(TMR) of composite nanoparticles with ferromagnetic(FM) core/anti-ferromagnetic(AFM) sh...Based on Monte Carlo simulations,the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance(TMR) of composite nanoparticles with ferromagnetic(FM) core/anti-ferromagnetic(AFM) shell is investigated.The simulated results indicate that the coercive field(H c) of composites increases with the decreasing ratio of core-radius(r core) to shell-radius(r shell).When the ratio of r shell to r core is approaching 4:3,H c decreases with increasing AFM thickness.In addition,TMR is found to increase with the decreasing ratio of r core to r shell,resulting from the enhancement of resistance changes in disordered AFM shell.展开更多
We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-s...We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.展开更多
文摘Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.
基金supported by National Natural Science Foundation of China (Nos.10674097,10774106)
文摘Measurements were performed of K-shell ionization cross sections of Ti element by 10~30 keV positron impact using the thick-target method. The effects of multiple scattering of incident positron and from bremsstrahlung photons and annihilation photons with the thick-target method are discussed with the Monte Carlo code PENELOPE. Meanwhile, the Monte Carlo method is also applied to determine the detection efficiencies of X- and γ-ray detectors. Our experimental K-shell ionization cross sections for Ti element are compared with the distorted-wave Born approximation (DWBA) theoretical predictions, and it is found that the agreement of the experimental data and theoretical values is good and this indicates that the experimental method adopted in this study is applicable.
文摘Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these factors. Although intensive studies have been conducted to quantify biomass factors, each study typically covers a limited geographic area. The goal of this study was to employ a meta-analysis approach to develop regional bio- mass factors for Quercus mongolica forests in South Korea. The biomass factors of interest were biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF) and root-to-shoot ratio (RSR). Our objectives were to select probability density functions (PDFs) that best fitted the three biomass factors and to quantify their means and uncertainties. A total of 12 scientific publications were selected as data sources based on a set of criteria. Fromthese publications we chose 52 study sites spread out across South Korea. The statistical model for the meta- analysis was a multilevel model with publication (data source) as the nesting factor specified under the Bayesian framework. Gamma, Log-normal and Weibull PDFs were evaluated. The Log-normal PDF yielded the best quanti- tative and qualitative fit for the three biomass factors. However, a poor fit of the PDF to the long right tail of observed BEF and RSR distributions was apparent. The median posterior estimates for means and 95 % credible intervals for BCEF, BEF and RSR across all 12 publica- tions were 1.016 (0.800-1.299), 1.414 (1.304-1.560) and 0.260 (0.200-0.335), respectively. The Log-normal PDF proved useful for estimating carbon stock of Q. mongolica forests on a regional scale and for uncertainty analysis based on Monte Carlo simulation.
基金Sponsored by the National Natural Science Foundation of China(70571010)
文摘A new stochastic volatility(SV)method to estimate the conditional value at risk(CVaR)is put forward.Firstly,it makes use of SV model to forecast the volatility of return.Secondly,the Markov chain Monte Carlo(MCMC)simulation and Gibbs sampling have been used to estimate the parameters in the SV model.Thirdly,in this model,CVaR calculation is immediate.In this way,the SV-CVaR model overcomes the drawbacks of the generalized autoregressive conditional heteroscedasticity value at risk(GARCH-VaR)model.Empirical study suggests that this model is better than GARCH-VaR model in this field.
基金supported by the National Natural Science Foundation of China (Grant No. 11074039)the National Key Project for Basic Research of China (Grant No. 2011CBA00200)
文摘Based on Monte Carlo simulations,the effect of structural configuration on the hysteresis behavior and tunneling magnetoresistance(TMR) of composite nanoparticles with ferromagnetic(FM) core/anti-ferromagnetic(AFM) shell is investigated.The simulated results indicate that the coercive field(H c) of composites increases with the decreasing ratio of core-radius(r core) to shell-radius(r shell).When the ratio of r shell to r core is approaching 4:3,H c decreases with increasing AFM thickness.In addition,TMR is found to increase with the decreasing ratio of r core to r shell,resulting from the enhancement of resistance changes in disordered AFM shell.
基金The authors gratefully acknowledge funding from the Swiss National Science Foundation.
文摘We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.