The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was de...The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.展开更多
We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm...We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm, which is based on the Least-squares FEM in combination with a scaling transformation, presents a good approximation of a diffusion operator in diffusive regimes and guarantees an accurate discrete solution. The numerical experiments in 2D and 3D case are given, and the numerical results show that this algorithm is correct and efficient.展开更多
Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. Th...In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. The convergence and error estimations of this scheme are proved. Its applications in the field of neutron logging show its effectiveness.展开更多
This paper deal with a nonlinear transport equation with delayed neutron andgeneral boundary conditions. We establish, via the nonlinear semigroups approach, the exis-tence and uniqueness of the mild solution, weak so...This paper deal with a nonlinear transport equation with delayed neutron andgeneral boundary conditions. We establish, via the nonlinear semigroups approach, the exis-tence and uniqueness of the mild solution, weak solution, strong solution and local solutionon LP-spaces (1 ≤ p 〈 +∞). Local and non local evolution problems are discussed.展开更多
In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LB...In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.展开更多
In fast reactors, the inherent neutron source strength is often insufficient for monitoring the reactor start-up operation with ex-core detectors. To increase the subcritical neutron flux, an auxiliary neutron source ...In fast reactors, the inherent neutron source strength is often insufficient for monitoring the reactor start-up operation with ex-core detectors. To increase the subcritical neutron flux, an auxiliary neutron source subassembly(SSA) is generally used to overcome this problem. In this study, the estimated neutron source strength and detector count rate of an antimony-beryllium-based SSA are obtained using the deterministic transport code DORT and Monte Carlo calculations. Because the antimony activation rate is a critical parameter, its sensitivity to the capture cross section and neutron flux spectrum is studied. The reaction cross section sensitivity is studied by considering data from different evaluated nuclear data files.It is observed that, because of the variation in the cross sections from different evaluated nuclear data files, the values of the saturation gamma(> 1.67 MeV) activity and neutron strength predicted by ORIGEN2 lie within ±2%.The obtained antimony activation rate and sensitivity to the neutron flux are partially validated by irradiating samples of antimony in the KAMINI reactor. The average onegroup capture cross sections of bare and cadmium-covered 123Sb samples obtained by the ratio method are 4.0 and 1.78 b, respectively. The results of the calculation predicting the activated neutron source strength as a function of operating time and sensitivity to the neutron spectrum in the irradiation region are also presented.展开更多
Nine samples of suspended matter at the surface or bottom and 34 elements in 20 samples of substrate sediment have been used in the neutron activation analyses. Authors study sediment and suspended matter movement by ...Nine samples of suspended matter at the surface or bottom and 34 elements in 20 samples of substrate sediment have been used in the neutron activation analyses. Authors study sediment and suspended matter movement by using the method of element geochemistry, and conclude through synthetic analysis and processing that the movement direction of suspended matter and substrate sediment tends to converge on the central area.展开更多
It is a very complex and time-consuming process to simulate the nuclear reactor neutron spectrum from the reactor core to the export channel by applying a Monte Carlo program. This paper presents a new method to calcu...It is a very complex and time-consuming process to simulate the nuclear reactor neutron spectrum from the reactor core to the export channel by applying a Monte Carlo program. This paper presents a new method to calculate the neutron spectrum by using the convolution technique which considers the channel transportation as a linear system and the transportation scattering as the response function. It also applies Monte Carlo Neutron and Photon Transport Code (MCNP) to simulate the response function numerically. With the application of convolution technique to calculate the spectrum distribution from the core to the channel, the process is then much more convenient only with the simple numerical integral numeration. This saves computer time and reduces some trouble in re-writing of the MCNP program.展开更多
In this paper, a simulation tool named the neutron-induced single event effect predictive platform(NSEEP^2) is proposed to reveal the mechanism of atmospheric neutron-induced single event effect(SEE) in an electro...In this paper, a simulation tool named the neutron-induced single event effect predictive platform(NSEEP^2) is proposed to reveal the mechanism of atmospheric neutron-induced single event effect(SEE) in an electronic device, based on heavy-ion data and Monte-Carlo neutron transport simulation. The detailed metallization architecture and sensitive volume topology of a nanometric static random access memory(SRAM) device can be considered to calculate the real-time soft error rate(RTSER) in the applied environment accurately. The validity of this tool is verified by real-time experimental results. In addition, based on the NSEEP^2, RTSERs of 90 nm–32 nm silicon on insulator(SOI) and bulk SRAM device under various ambient conditions are predicted and analyzed to evaluate the neutron SEE sensitivity and reveal the underlying mechanism. It is found that as the feature size shrinks, the change trends of neutron SEE sensitivity of bulk and SOI technologies are opposite, which can be attributed to the different MBU performances. The RTSER of bulk technology is always 2.8–64 times higher than that of SOI technology, depending on the technology node, solar activity, and flight height.展开更多
Based on the BL09 terminal of China Spallation Neutron Source(CSNS),single event upset(SEU)cross sections of14 nm fin field-effect transistor(FinFET)and 65 nm quad data rate(QDR)static random-access memories(SRAMs)are...Based on the BL09 terminal of China Spallation Neutron Source(CSNS),single event upset(SEU)cross sections of14 nm fin field-effect transistor(FinFET)and 65 nm quad data rate(QDR)static random-access memories(SRAMs)are obtained under different incident directions of neutrons:front,back and side.It is found that,for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the sensitive volume.The SEU cross section under the worst direction is 1.7-4.7 times higher than those under other incident directions.While for multiple-cell upset(MCU)sensitivity,side incidence is the worst direction,with the highest MCU ratio.The largest MCU for the 14 nm FinFET SRAM involves 8 bits.Monte-Carlo simulations are further performed to reveal the characteristics of neutron induced secondary ions and understand the inner mechanisms.展开更多
The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator desi...The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA03030102)
文摘The analysis of the fuel depletion behavior is critical for maintaining the safety of accelerator-driven subcritical systems(ADSs). The code COUPLE2.0 coupling 3-D neutron transport and point burnup calculation was developed by Tsinghua University. A Monte Carlo method is used for the neutron transport analysis, and the burnup calculation is based on a deterministic method. The code can be used for the analysis of targets coupled with a reactor in ADSs. In response to additional ADS analysis requirements at the Institute of Modern Physics at the Chinese Academy of Sciences, the COUPLE3.0 version was developed to include the new functions of(1) a module for the calculation of proton irradiation for the analysis of cumulative behavior using the residual radionuclide operating history,(2) a fixed-flux radiation module for hazard assessment and analysis of the burnable poison, and(3) a module for multi-kernel parallel calculation, which improves the radionuclide replacement for the burnup analysis to balance the precision level and computational efficiency of the program. This paper introduces thevalidation of the COUPLE3.0 code using a fast reactor benchmark and ADS benchmark calculations. Moreover,the proton irradiation module was verified by a comparison with the analytic method of calculating the210 Po accumulation results. The results demonstrate that COUPLE3.0 is suitable for the analysis of neutron transport and the burnup of nuclides for ADSs.
基金This work was supported by National Natural Science Foundation of China(No.10371096)
文摘We present an algorithm for numerical solution of transport equation in diffusive regimes, in which the transport equation is nearly singular and its solution becomes a solution of a diffusion equation. This algorithm, which is based on the Least-squares FEM in combination with a scaling transformation, presents a good approximation of a diffusion operator in diffusive regimes and guarantees an accurate discrete solution. The numerical experiments in 2D and 3D case are given, and the numerical results show that this algorithm is correct and efficient.
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
文摘In this paper, a new numerical method, the coupling method of spherical harmonic function spectral and streamline diffusion finite element for unsteady Boltzmann equation in the neutron logging field, is discussed. The convergence and error estimations of this scheme are proved. Its applications in the field of neutron logging show its effectiveness.
文摘This paper deal with a nonlinear transport equation with delayed neutron andgeneral boundary conditions. We establish, via the nonlinear semigroups approach, the exis-tence and uniqueness of the mild solution, weak solution, strong solution and local solutionon LP-spaces (1 ≤ p 〈 +∞). Local and non local evolution problems are discussed.
基金supported by the Foundation of National Key Laboratory of Reactor System Design Technology(No.HT-LW-02-2014003)the State Key Program of National Natural Science of China(No.51436009)
文摘In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.
文摘In fast reactors, the inherent neutron source strength is often insufficient for monitoring the reactor start-up operation with ex-core detectors. To increase the subcritical neutron flux, an auxiliary neutron source subassembly(SSA) is generally used to overcome this problem. In this study, the estimated neutron source strength and detector count rate of an antimony-beryllium-based SSA are obtained using the deterministic transport code DORT and Monte Carlo calculations. Because the antimony activation rate is a critical parameter, its sensitivity to the capture cross section and neutron flux spectrum is studied. The reaction cross section sensitivity is studied by considering data from different evaluated nuclear data files.It is observed that, because of the variation in the cross sections from different evaluated nuclear data files, the values of the saturation gamma(> 1.67 MeV) activity and neutron strength predicted by ORIGEN2 lie within ±2%.The obtained antimony activation rate and sensitivity to the neutron flux are partially validated by irradiating samples of antimony in the KAMINI reactor. The average onegroup capture cross sections of bare and cadmium-covered 123Sb samples obtained by the ratio method are 4.0 and 1.78 b, respectively. The results of the calculation predicting the activated neutron source strength as a function of operating time and sensitivity to the neutron spectrum in the irradiation region are also presented.
文摘Nine samples of suspended matter at the surface or bottom and 34 elements in 20 samples of substrate sediment have been used in the neutron activation analyses. Authors study sediment and suspended matter movement by using the method of element geochemistry, and conclude through synthetic analysis and processing that the movement direction of suspended matter and substrate sediment tends to converge on the central area.
文摘It is a very complex and time-consuming process to simulate the nuclear reactor neutron spectrum from the reactor core to the export channel by applying a Monte Carlo program. This paper presents a new method to calculate the neutron spectrum by using the convolution technique which considers the channel transportation as a linear system and the transportation scattering as the response function. It also applies Monte Carlo Neutron and Photon Transport Code (MCNP) to simulate the response function numerically. With the application of convolution technique to calculate the spectrum distribution from the core to the channel, the process is then much more convenient only with the simple numerical integral numeration. This saves computer time and reduces some trouble in re-writing of the MCNP program.
基金supported by the National Natural Science Foundation of China(Grant No.11505033)the Science and Technology Research Project of Guangdong Province,China(Grant Nos.2015B090901048 and 2017B090901068)the Science and Technology Plan Project of Guangzhou,China(Grant No.201707010186)
文摘In this paper, a simulation tool named the neutron-induced single event effect predictive platform(NSEEP^2) is proposed to reveal the mechanism of atmospheric neutron-induced single event effect(SEE) in an electronic device, based on heavy-ion data and Monte-Carlo neutron transport simulation. The detailed metallization architecture and sensitive volume topology of a nanometric static random access memory(SRAM) device can be considered to calculate the real-time soft error rate(RTSER) in the applied environment accurately. The validity of this tool is verified by real-time experimental results. In addition, based on the NSEEP^2, RTSERs of 90 nm–32 nm silicon on insulator(SOI) and bulk SRAM device under various ambient conditions are predicted and analyzed to evaluate the neutron SEE sensitivity and reveal the underlying mechanism. It is found that as the feature size shrinks, the change trends of neutron SEE sensitivity of bulk and SOI technologies are opposite, which can be attributed to the different MBU performances. The RTSER of bulk technology is always 2.8–64 times higher than that of SOI technology, depending on the technology node, solar activity, and flight height.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B010145001)the National Natural Science Foundation of China(Grant Nos.12075065 and 12175045)the Applied Fundamental Research Project of Guangzhou City,China(Grant No.202002030299)
文摘Based on the BL09 terminal of China Spallation Neutron Source(CSNS),single event upset(SEU)cross sections of14 nm fin field-effect transistor(FinFET)and 65 nm quad data rate(QDR)static random-access memories(SRAMs)are obtained under different incident directions of neutrons:front,back and side.It is found that,for both technology nodes,the“worst direction”corresponds to the case that neutrons traverse package and metallization before reaching the sensitive volume.The SEU cross section under the worst direction is 1.7-4.7 times higher than those under other incident directions.While for multiple-cell upset(MCU)sensitivity,side incidence is the worst direction,with the highest MCU ratio.The largest MCU for the 14 nm FinFET SRAM involves 8 bits.Monte-Carlo simulations are further performed to reveal the characteristics of neutron induced secondary ions and understand the inner mechanisms.
文摘The possibility of developing a stellarator-based neutron source designed for the nuclear reaction initiation in the blanket of hybrid reactor is studied. An analog of the Large Helical Device (LHD) stellarator design, with linear dimensions increased by a factor of 1.5 is taken for the magnetic system. Plasma parameters and the deuterium-tritium (DT) mixture fusion power are calculated using the space-time numerical code under the assumption of the neoclassical transport in the ambipolarity regime. Using the 10 MW plasma heating sources, it is possible to obtain the DT fusion power of one-to-two tens MW.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.