Assumption about the inner surface of mold is made according to the forming mechanisms of frictional force. The frictional force between billet and mold can be analysed by calculating the thermal shrinkage and the she...Assumption about the inner surface of mold is made according to the forming mechanisms of frictional force. The frictional force between billet and mold can be analysed by calculating the thermal shrinkage and the shearing strength of the meniscus.The model is used to calculate the maximum drawing speed at different conditions. The results are very satisfactory.展开更多
The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were ana...The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation展开更多
Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed ...Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.展开更多
Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of ...Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of field monitoring,calcula-tion,and simulation were introduced.It summarized and analyzed the main applications,flaws and solutions,and improve-ments of these methods.Based on this analysis,the future developing directions of subsidence data acquisition methods were prospected and suggested.The subsidence monitoring methods have evolved from conventional ground monitoring to combined methods involving ground-based,space-based,and air-based measurements.While the conventional methods are mature in technology and reliable in accuracy,emerging remote sensing technologies have obvious advantages in terms of reducing field workload and increasing data coverage.However,these remote sensing methods require further technological development to be more suitable for monitoring mining subsidence.The existing subsidence calculation methods have been applied to various geological and mining conditions,and many improvements have already been made.In the future,more attention should be paid to unifying the studies of calculation methods and mechanical principles.The simulation methods are quite dependent on the similarity of the model to the site conditions and are generally used as an auxiliary data source for subsidence studies.The cross-disciplinary studies between subsidence data acquisition methods and other technologies should be given serious consideration,as they can be expected to lead to breakthroughs in areas such as theories,devices,software,and other aspects.展开更多
The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in I...The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in In-containment Refueling Water Storage Tank (IRWST) was carried out. The single-tube coupling model three-dimensional natural circulation in the IRWST was simulated numerically using Fluent. The heat transfer and flow characteristics of the fluid in IRWST were obtained. The comparison of the results between theoretical arithmetic and numerical simulation showed that the theoretical calculation method is suitable for the heat transfer calculation of PRHR HX.展开更多
The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc...The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZnxS alloys, which means that the Cdl-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cdl_xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.sZn0.sS alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cdo.sZn0.sS alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.展开更多
Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even...Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even thousand of different runs are performed.In this work,a new methodology using artificial intelligence to learn the thermodynamic equilibrium is proposed.This algorithm is used to replace the classical equilibrium workflow in reservoir simulation.The new method avoids the stability test for single-phase cells in most cases and provides an accurate two-phase flash initial estimate.The classical and the new workflow are compared for a gas-oil mixing case,showing a simulation time speed-up of approximately 50%.The new method can be used in compositional reservoir simulations.展开更多
We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatial...We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.展开更多
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved...By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.展开更多
This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Car...This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.展开更多
As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large ...As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.展开更多
To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For si...To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.展开更多
Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been w...Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.展开更多
The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By thi...The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.展开更多
Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearanc...Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearance of many failures related to this type of architecture. While performing tasks, if the response time of a node in the system incomprehensibly exceeds the requirements of the specifications, the node experiences an omission failure. The task running in the failed node will be unavailable until the node resumes normal activity. Waiting not being a possible solution, many fault tolerance methods have been proposed. Despite this large number of fault tolerance methods on offer, computer grids are still prone to many failures by omission. In this work, a numerical study of the failures by omission which occur in the calculation grids during the execution of the tasks was carried out and a model allowing anticipating its failures was proposed with the formalism PDEVS (Parallel Discret EVent system Specification).展开更多
Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio...Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio equation are deduced, and visualized data analysis is presented. The analy-sis indicates that, calculated with the proposed equations, the overestimate for call congestion ratio and channel utilization ratio can be rectified, and thereby the cost of channels can be saved by 2000 in a small system.With MATLAB programming, line configuration methods are provided. In order to generally and intuitively show the dynamic running of the system, and to analyze,promote and improve it, the system is simulated using M/M/n/n/m queuing model and Monte-Carlo method. In addition, the simulation validates the correctness of the theoretical analysis and optimizing configuration method.展开更多
Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structure...Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.展开更多
文摘Assumption about the inner surface of mold is made according to the forming mechanisms of frictional force. The frictional force between billet and mold can be analysed by calculating the thermal shrinkage and the shearing strength of the meniscus.The model is used to calculate the maximum drawing speed at different conditions. The results are very satisfactory.
文摘The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation
文摘Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation, prevailing alloy charge prediction and optimizing the sequence of melt chemistry modification. The model performance was established using real-time production data from a cast iron-based foundry with a 1- and 2-ton induction furnace capacity and a medium carbon-based foundry with a 10- and 15-ton induction furnace capacity. A simulation engine (CastMELT) was developed in Java IDE with a MySQL database for continuous interaction with changing process parameters to run the model for validation. The comparison between the model prediction and production results was analyzed for charge prediction, melt modification and ferroalloy optimization and possible cost savings. The model performance for elemental charge prediction and calculation purpose with respect to the charge input (at overall scrap meltdown) gave R-squared, Standard Error, Pearson correlation and Significance value of (0.934, 0.06, 0.97, 0.0003) for Carbon prediction, (0.962, 0.06, 0.98, 0.00009) for Silicon prediction, (0.999, 0.048, 0.999, 9E -11) for Manganese Prediction, and (0.997, 0.076, 0.999, 6E -7) for Chromium prediction respectively. Correlation analysis for melt modification (after charging of ferroalloy) using the model for after-alloying spark analysis compared with the target chemistry is at 99.82%. The results validate the suitability of the developed model as a functional system of induction furnace melting for combined charge calculation and melt optimization Techno-economic evaluation results showed that 0.98% - 0.25% ferroalloy saving per ton of melt is possible using the model. This brings about an annual production cost savings of 100,000 $/y in foundry A (medium carbon steel) and 20,000 $/y in foundry B (cast iron) on the use of different ferroalloy materials.
基金supported by the Natural Science Foundation of Shanxi Province,China (201901D111074,20210302124437).
文摘Subsidence data acquisition methods are crucial to mining subsidence research and an essential component of achieving the goal of environmentally friendly coal mining.The origin and history of the existing methods of field monitoring,calcula-tion,and simulation were introduced.It summarized and analyzed the main applications,flaws and solutions,and improve-ments of these methods.Based on this analysis,the future developing directions of subsidence data acquisition methods were prospected and suggested.The subsidence monitoring methods have evolved from conventional ground monitoring to combined methods involving ground-based,space-based,and air-based measurements.While the conventional methods are mature in technology and reliable in accuracy,emerging remote sensing technologies have obvious advantages in terms of reducing field workload and increasing data coverage.However,these remote sensing methods require further technological development to be more suitable for monitoring mining subsidence.The existing subsidence calculation methods have been applied to various geological and mining conditions,and many improvements have already been made.In the future,more attention should be paid to unifying the studies of calculation methods and mechanical principles.The simulation methods are quite dependent on the similarity of the model to the site conditions and are generally used as an auxiliary data source for subsidence studies.The cross-disciplinary studies between subsidence data acquisition methods and other technologies should be given serious consideration,as they can be expected to lead to breakthroughs in areas such as theories,devices,software,and other aspects.
文摘The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in In-containment Refueling Water Storage Tank (IRWST) was carried out. The single-tube coupling model three-dimensional natural circulation in the IRWST was simulated numerically using Fluent. The heat transfer and flow characteristics of the fluid in IRWST were obtained. The comparison of the results between theoretical arithmetic and numerical simulation showed that the theoretical calculation method is suitable for the heat transfer calculation of PRHR HX.
基金supported by the National Natural Science Foundation of China(Grant Nos.11164014 and 11364025)Gansu Science and Technology Pillar Program,China(Grant No.1204GKCA057)
文摘The first-principles calculations based on density functional theory combined with cluster expansion techniques and Monte Carlo (MC) simulations were used to study the phase diagrams of both wurtzite (WZ) and zinc-blende (ZB) Cdl_xZnxS alloys. All formation energies are positive for WZ and ZB Cdl-xZnxS alloys, which means that the Cdl-xZnxS alloys are unstable and have a tendency to phase separation. For WZ and ZB Cdl_xZnxS alloys, the consolute temperatures are 655 K and 604 K, respectively, and they both have an asymmetric miscibility gap. We obtained the spatial distributions of Cd and Zn atoms in WZ and ZB Cd0.sZn0.sS alloys at different temperatures by MC simulations. We found that both WZ and ZB phases of Cdo.sZn0.sS alloy exhibit phase segregation of Cd and Zn atoms at low temperature, which is consistent with the phase diagrams.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.
基金Project (59974011) supported by the National Natural Science Foundation of China.Acknowledgements The authors are grateful for financial support from the National Natural Science Foundation of China (59974011). Heartfelt thanks are also given to the CompuTherm LLC group of Wisconsin-Madison University for providing the software program to calculate the phase equilibria.
文摘Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even thousand of different runs are performed.In this work,a new methodology using artificial intelligence to learn the thermodynamic equilibrium is proposed.This algorithm is used to replace the classical equilibrium workflow in reservoir simulation.The new method avoids the stability test for single-phase cells in most cases and provides an accurate two-phase flash initial estimate.The classical and the new workflow are compared for a gas-oil mixing case,showing a simulation time speed-up of approximately 50%.The new method can be used in compositional reservoir simulations.
基金Project(2018YFC1505401)supported by the National Key R&D Program of ChinaProject(41702310)supported by the National Natural Science Foundation of China+1 种基金Project(SKLGP2017K014)supported by the Foundation of State Key Laboratory of Geohazard Prevention and Geo-environment Protection,ChinaProject(2018JJ3644)supported by the Natural Science Foundation of Hunan Province,China
文摘We proposed an enhanced image binarization method.The proposed solution incorporates Monte-Carlo simulation into the local thresholding method to address the essential issues with respect to complex background,spatially-changed illumination,and uncertainties of block size in traditional method.The proposed method first partitions the image into square blocks that reflect local characteristics of the image.After image partitioning,each block is binarized using Otsu’s thresholding method.To minimize the influence of the block size and the boundary effect,we incorporate Monte-Carlo simulation into the binarization algorithm.Iterative calculation with varying block sizes during Monte-Carlo simulation generates a probability map,which illustrates the probability of each pixel classified as foreground.By setting a probability threshold,and separating foreground and background of the source image,the final binary image can be obtained.The described method has been tested by benchmark tests.Results demonstrate that the proposed method performs well in dealing with the complex background and illumination condition.
基金The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in Chinathe National Natural Science Foundation of China (19772069)
文摘By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.
基金supported by the National Water Pollution Control and Management Technology Major Projects(Grant No. 2009ZX07423-001)the National Natural Science Foundation of China (Grants No.51179069and 40971300)the Fundamental Research Funds for the Central Universities (Grants No.10QX43,09MG16,and 10QG23)
文摘This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM), which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402004,2016YFC1402000,2018YFC1407003)the National Natural Science Foundation of China(Nos.U1706216,U1606402,41421005)
文摘As one of the most serious natural disasters,many typhoons affect southeastern China every year.Taking Shenzhen,a coastal city in southeast China as an example,we employed a Monte-Carlo simulation to generate a large number of virtual typhoons for wind hazard analysis.By analyzing 67-year historical typhoons data from 1949 to 2015 using the Best Track Dataset for Tropical Cyclones over the Western North Pacific recorded by the Shanghai Typhoon Institute,China Meteorological Administration(CMASTI),typhoon characteristic parameters were extracted and optimal statistical distributions established for the parameters in relation to Shenzhen.We employed the Monte-Carlo method to sample each distribution to generate the characteristic parameters of virtual typhoons.In addition,the Yah Meng(YM)wind field model was introduced,and the sensitivity of the YM model to several parameters discussed.Using the YM wind field model,extreme wind speeds were extracted from the virtual typhoons.The extreme wind speeds for different return periods were predicted and compared with the current structural code to provide improved wind load information for wind-resistant structural design.
基金supported by the China Postdoctoral Science Foundation(No.2021M703045)the National Natural Science Foundation of China(No.12075067)the National Key R&D Program of China(No.2018YFE0180900).
文摘To perform nuclear reactor simulations in a more realistic manner,the coupling scheme between neutronics and thermal-hydraulics was implemented in the HNET program for both steady-state and transient conditions.For simplicity,efficiency,and robustness,the matrixfree Newton/Krylov(MFNK)method was applied to the steady-state coupling calculation.In addition,the optimal perturbation size was adopted to further improve the convergence behavior of the MFNK.For the transient coupling simulation,the operator splitting method with a staggered time mesh was utilized to balance the computational cost and accuracy.Finally,VERA Problem 6 with power and boron perturbation and the NEACRP transient benchmark were simulated for analysis.The numerical results show that the MFNK method can outperform Picard iteration in terms of both efficiency and robustness for a wide range of problems.Furthermore,the reasonable agreement between the simulation results and the reference results for the NEACRP transient benchmark verifies the capability of predicting the behavior of the nuclear reactor.
基金supported by the National Science Foundation of China (10732050,10872115 and 11025208)Excellent Young Scholars Research Fund of Beijing Institute of Technology
文摘Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and ex- periments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molec- ular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic com- plexity of the ligand-receptor system, the energy barrier pre- dicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results sug- gested that the JI method is more appropriate for reconstruct- ing free energy landscape using the data taken from experi- ments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distri- bution in SMD simulations.
文摘The Monte- Carlo method is used to simulate the surface fatigue crack growth rate for offshore structural steel E36-Z35, and to determine the distributions and relevance of the parameters in the Paris equation. By this method, the time and cost of fatigue crack propagation testing can be reduced. The application of the method is demonstrated by use of four sets of fatigue crack propagation data for offshore structural steel E36-Z35. A comparison of the test data with the theoretical prediction for surface crack growth rate shows the application of the simulation method to the fatigue crack propagation tests is successful.
文摘Computer grids are infrastructures in which heterogeneous and distributed resources offer very high computing or storage performance. If they offer extreme computing performance, they are also subject to the appearance of many failures related to this type of architecture. While performing tasks, if the response time of a node in the system incomprehensibly exceeds the requirements of the specifications, the node experiences an omission failure. The task running in the failed node will be unavailable until the node resumes normal activity. Waiting not being a possible solution, many fault tolerance methods have been proposed. Despite this large number of fault tolerance methods on offer, computer grids are still prone to many failures by omission. In this work, a numerical study of the failures by omission which occur in the calculation grids during the execution of the tasks was carried out and a model allowing anticipating its failures was proposed with the formalism PDEVS (Parallel Discret EVent system Specification).
文摘Based on the steady-state solution of finite-state birth and death process, the principle of line configuration for shared multi-channel system is analyzed. Call congestion ratio equation and channel utilization ratio equation are deduced, and visualized data analysis is presented. The analy-sis indicates that, calculated with the proposed equations, the overestimate for call congestion ratio and channel utilization ratio can be rectified, and thereby the cost of channels can be saved by 2000 in a small system.With MATLAB programming, line configuration methods are provided. In order to generally and intuitively show the dynamic running of the system, and to analyze,promote and improve it, the system is simulated using M/M/n/n/m queuing model and Monte-Carlo method. In addition, the simulation validates the correctness of the theoretical analysis and optimizing configuration method.
基金supported by the National Science Foundation of China under the Grant No.61176113 and 51335008the Special-funded program on national key scientific instruments and equipment development of China under the Grant No.2012YQ12004706the Program for Changjiang Scholars and Innovative Research Team in University(IRT1033)。
文摘Three-dimensional(3D) single-layer microcoils have always been a key element for electromagnetic systems;but they lack an easy and accurate method to calculate the inductance value for their complex 3D micro-structures. This paper employed a curve-fitting process to obtain the associated equation for the inductance value and geometric parameters based on the simulation results. The correction factors regarding helical pitch and wire diameter were reviewed,which are used for compensation in the Nagaoka formula. The simulation process numerically simulated the performance of the 3D microcoils using a FEM electro-magnetic-coupled analysis method. Comparison of the simulated inductance value and the Nagaoka formula was undertaken,which shows that the helical pitch and wire diameter contribute a main role in the calculation error. The derived formula was expressed in a concise form to precisely calculate the inductance value of 3D microsolenoids with single-layer coils.