This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provi...This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.展开更多
This paper describes a campaign of WEC (wave energy converter) testing and presents a selection of the results related to the measured motions and mooring tensions. A 1:20 physical model has been successfully deplo...This paper describes a campaign of WEC (wave energy converter) testing and presents a selection of the results related to the measured motions and mooring tensions. A 1:20 physical model has been successfully deployed using a three point mooring installed at sea (Strangford Lough, NI) in 10 m depth. In calm weather the overall dynamics of mooring tensions is dominated by the tidal cycle due to the progressive lifting of the heavy chain with the increase in water depth on the flood and gradual lowering on the ebb. In flesh winds the dynamics is very complex, but can be studied with the aid of mathematical modelling. A simulation model was used to assess the dynamics of the mooring lines, and the results of open water tests have been compared with the model's performance. The results indicate that, in general, the model shows a reasonable agreement with the observations. The WEC's motions and the measured loads on the leading mooring line appear to relate to the concurrent environmental conditions. The data obtained can therefore be used for the model's calibration and further improvements, which is valuable for improving the WEC's design and operational characteristics. This may be important not only in relation to the issues of reliability and power take off, but also in terms of minimising the adverse effects of mooring lines on bottom sediments, as well as indirect effects of the eroded particles on a wide range of aquatic processes.展开更多
基金Funded by the UK Engineering and Physical Sciences Research Council under the grant EP/E040136/1
文摘This paper describes the physical model testing of a wave energy converter (WEC) undertaken in the Heriot-Watt wave basin during October 2010 as part of the SUPERGEN2 project funded by the British government,and provides a preliminary analysis of the extreme mooring loads.Tests were completed at 1/20 scale on a single oscillating water column device deployed with a 3-line taut mooring configuration.The model was fully instrumented with mooring line load cells and an optical motion tracker.The tests were preceded by calibration of instrumentation and the wave test environment,and carried out in long crested waves regimes with 12 combinations of peak period T p and significant wave height H s.The main objective for these experiments was to examine the effect of shape and size of the tethered buoy on the leading mooring line on the maximum mooring loads and the excursion of the device.Comparison of the loads at different configurations of the tethered buoy suggests that the results are consistent with the hypothesis that the mooring forces should depend on the change in stiffness of the mooring system.In particular,the results indicate that with the spectral peak period close to the natural period of the moored device of 8 s,peak loads in a configuration with a smaller buoy may be considerably higher than those with a larger buoy.However,when T p was dissimilar,a harder mooring with a smaller spherical buoy appears to result in lower peak loads.The exact configuration should,therefore,be chosen according to the prevalent conditions of any particular location,and will also depend on the design and expected maintenance schedule,as well as matters related to the risk to navigation,environmental effects and the conservation status of the area.
文摘This paper describes a campaign of WEC (wave energy converter) testing and presents a selection of the results related to the measured motions and mooring tensions. A 1:20 physical model has been successfully deployed using a three point mooring installed at sea (Strangford Lough, NI) in 10 m depth. In calm weather the overall dynamics of mooring tensions is dominated by the tidal cycle due to the progressive lifting of the heavy chain with the increase in water depth on the flood and gradual lowering on the ebb. In flesh winds the dynamics is very complex, but can be studied with the aid of mathematical modelling. A simulation model was used to assess the dynamics of the mooring lines, and the results of open water tests have been compared with the model's performance. The results indicate that, in general, the model shows a reasonable agreement with the observations. The WEC's motions and the measured loads on the leading mooring line appear to relate to the concurrent environmental conditions. The data obtained can therefore be used for the model's calibration and further improvements, which is valuable for improving the WEC's design and operational characteristics. This may be important not only in relation to the issues of reliability and power take off, but also in terms of minimising the adverse effects of mooring lines on bottom sediments, as well as indirect effects of the eroded particles on a wide range of aquatic processes.