The present investigations are associated with designing Morlet wavelet neural network(MWNN)for solving a class of susceptible,infected,treatment and recovered(SITR)fractal systems of COVID-19 propagation and control....The present investigations are associated with designing Morlet wavelet neural network(MWNN)for solving a class of susceptible,infected,treatment and recovered(SITR)fractal systems of COVID-19 propagation and control.The structure of an error function is accessible using the SITR differential form and its initial conditions.The optimization is performed using the MWNN together with the global as well as local search heuristics of genetic algorithm(GA)and active-set algorithm(ASA),i.e.,MWNN-GA-ASA.The detail of each class of the SITR nonlinear COVID-19 system is also discussed.The obtained outcomes of the SITR system are compared with the Runge-Kutta results to check the perfection of the designed method.The statistical analysis is performed using different measures for 30 independent runs as well as 15 variables to authenticate the consistency of the proposed method.The plots of the absolute error,convergence analysis,histogram,performancemeasures,and boxplots are also provided to find the exactness,dependability and stability of the MWNN-GA-ASA.展开更多
In this paper,two wavelet neural network(WNN)frames which depend on Morlet wavelet function and Gaussian wavelet function were established.In order to improve the efficiency of model training,the momentum term was app...In this paper,two wavelet neural network(WNN)frames which depend on Morlet wavelet function and Gaussian wavelet function were established.In order to improve the efficiency of model training,the momentum term was applied to modify the weights and thresholds,and the output of the network was summed up by function transformation of output layer nodes.When the Gaussian Wavelet Neural Networks(GWNN)and Morlet Wavelet Neural Networks(MWNN)were applied to coal consumption rate(CCR)estimation in a thermal power plant,the results confirmed their potency in function approximation.In addition,the influence of learning rate on the models was also discussed through the orthogonal experiment.展开更多
基金The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group No.RG-21-09-12.
文摘The present investigations are associated with designing Morlet wavelet neural network(MWNN)for solving a class of susceptible,infected,treatment and recovered(SITR)fractal systems of COVID-19 propagation and control.The structure of an error function is accessible using the SITR differential form and its initial conditions.The optimization is performed using the MWNN together with the global as well as local search heuristics of genetic algorithm(GA)and active-set algorithm(ASA),i.e.,MWNN-GA-ASA.The detail of each class of the SITR nonlinear COVID-19 system is also discussed.The obtained outcomes of the SITR system are compared with the Runge-Kutta results to check the perfection of the designed method.The statistical analysis is performed using different measures for 30 independent runs as well as 15 variables to authenticate the consistency of the proposed method.The plots of the absolute error,convergence analysis,histogram,performancemeasures,and boxplots are also provided to find the exactness,dependability and stability of the MWNN-GA-ASA.
基金Science and technology development plan of Jilin City(201464061)National Natural Science Foundation of China(51476025)the KEY Scientific and Technological Project of Jilin Province of China(20150203001SF).
文摘In this paper,two wavelet neural network(WNN)frames which depend on Morlet wavelet function and Gaussian wavelet function were established.In order to improve the efficiency of model training,the momentum term was applied to modify the weights and thresholds,and the output of the network was summed up by function transformation of output layer nodes.When the Gaussian Wavelet Neural Networks(GWNN)and Morlet Wavelet Neural Networks(MWNN)were applied to coal consumption rate(CCR)estimation in a thermal power plant,the results confirmed their potency in function approximation.In addition,the influence of learning rate on the models was also discussed through the orthogonal experiment.