MonteCloPi算法是一种基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的任意时间子群发现算法,旨在使用MCTS策略构建非对称的最佳优先搜索树来发现高质量的多样性模式集,但是限制了目标为二值变量.为此,本文结合了数值目标的特点,...MonteCloPi算法是一种基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的任意时间子群发现算法,旨在使用MCTS策略构建非对称的最佳优先搜索树来发现高质量的多样性模式集,但是限制了目标为二值变量.为此,本文结合了数值目标的特点,通过为置信度上界(upper confidence bound,UCB)公式选取合适的C值、动态调整各个样本的拓展权重并对搜索树进行剪枝、使用自适应top-k均值更新策略,将MonteCloPi算法拓展到了数值目标.最后,在UCI数据集、全国健康与营养调查(national health and nutrition examination survey,NHANES)听力测试数据集上的实验结果表明本文的算法相比其他算法可以发现更高质量的多样性模式集,并且最优子群的可解释性也更好.展开更多
无人船航行时的安全性、可靠性和稳定性至关重要。有效的路径规划技术可显著提高无人船的避碰能力和缩短航行距离,已成为无人船领域的重点研究内容。本文:首先,分析了传统的快速搜索随机树(rapidly-exploration random tree,RRT)算法的...无人船航行时的安全性、可靠性和稳定性至关重要。有效的路径规划技术可显著提高无人船的避碰能力和缩短航行距离,已成为无人船领域的重点研究内容。本文:首先,分析了传统的快速搜索随机树(rapidly-exploration random tree,RRT)算法的程序原理和算法流程;其次,针对其不足之处引入偏置采样的方案,增加了对目标点的引导以提高其运行效率,在此基础上采用贪心思想进一步优化无人船的路径,继而提出改进的RRT算法和RRT-connect(rapidly-exploring random tree connect)算法;最后,对几种环境复杂程度不同的地图进行仿真模拟实验,验证改进方法的可行性。验证结果表明,改进的RRT-Connect算法可减少环境复杂多变对无人船路径规划的干扰,并能有效提高路径规划效率。展开更多
针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份...针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份为状态,用各月填筑工作面对应的填筑可达强度约束动作空间,综合考虑节点工期、总工期、坝面施工机械费用和土石方调运费用等因素构造奖励函数。此外,结合本文研究问题的特点,对MCTS迭代中的上限置信区间算法(upper confidence bound apply to tree,UCT)进行了改进和比较分析,最后以一个工程实例对本文提出模型的有效性进行了验证分析。结果表明,与施工仿真相比,以MCTS为框架的土石方动态调配模型的计算分析时间大大减少,为土石方动态调配问题提供了新的模型与手段。展开更多
文摘MonteCloPi算法是一种基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的任意时间子群发现算法,旨在使用MCTS策略构建非对称的最佳优先搜索树来发现高质量的多样性模式集,但是限制了目标为二值变量.为此,本文结合了数值目标的特点,通过为置信度上界(upper confidence bound,UCB)公式选取合适的C值、动态调整各个样本的拓展权重并对搜索树进行剪枝、使用自适应top-k均值更新策略,将MonteCloPi算法拓展到了数值目标.最后,在UCI数据集、全国健康与营养调查(national health and nutrition examination survey,NHANES)听力测试数据集上的实验结果表明本文的算法相比其他算法可以发现更高质量的多样性模式集,并且最优子群的可解释性也更好.
文摘无人船航行时的安全性、可靠性和稳定性至关重要。有效的路径规划技术可显著提高无人船的避碰能力和缩短航行距离,已成为无人船领域的重点研究内容。本文:首先,分析了传统的快速搜索随机树(rapidly-exploration random tree,RRT)算法的程序原理和算法流程;其次,针对其不足之处引入偏置采样的方案,增加了对目标点的引导以提高其运行效率,在此基础上采用贪心思想进一步优化无人船的路径,继而提出改进的RRT算法和RRT-connect(rapidly-exploring random tree connect)算法;最后,对几种环境复杂程度不同的地图进行仿真模拟实验,验证改进方法的可行性。验证结果表明,改进的RRT-Connect算法可减少环境复杂多变对无人船路径规划的干扰,并能有效提高路径规划效率。
文摘针对堆石坝填筑进度控制以及土石方动态调运问题,受AlphaGo-Zero的启发,本文提出了一个基于蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的土石方智能动态调配模型。该模型以当前累计填筑工程量、紧邻前一月份完成工程量以及当前月份为状态,用各月填筑工作面对应的填筑可达强度约束动作空间,综合考虑节点工期、总工期、坝面施工机械费用和土石方调运费用等因素构造奖励函数。此外,结合本文研究问题的特点,对MCTS迭代中的上限置信区间算法(upper confidence bound apply to tree,UCT)进行了改进和比较分析,最后以一个工程实例对本文提出模型的有效性进行了验证分析。结果表明,与施工仿真相比,以MCTS为框架的土石方动态调配模型的计算分析时间大大减少,为土石方动态调配问题提供了新的模型与手段。