期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Three-dimensionally oriented organization of hexagonal MIL-96 microplates toward superior film microstructure
1
作者 Sixing Chen Xinmiao Jin +3 位作者 Yuyang Wu Taotao Ji Fei Wang Yi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期69-73,共5页
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a... Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization. 展开更多
关键词 Metaleorganic framework FILM Orientation Epitaxial growth morphological control
下载PDF
Surfactant-assisted hydrothermally synthesized MoS_2 samples with controllable morphologies and structures for anthracene hydrogenation 被引量:9
2
作者 李敏 王冬娥 +5 位作者 李佳鹤 潘振栋 马怀军 姜玉霞 田志坚 陆安慧 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第3期597-606,共10页
MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structure... MoS_2 samples with controllable morphologies and structures were synthesized using surfactantassisted hydrothermal processes.The effects of surfactants(PEG,PVP,P123,SDS,AOT,and CTAB)on the morphologies and structures of MoS_2 samples were investigated.The results revealed that spherical,bulk-like,and flower-like MoS_2 particles assembled by NH4~+-intercalated MoS_2 nano-sheets were synthesized.The morphologies of the MoS_2 samples and their structures(including the slab length and the number of stacked layers) of MoS_2 nano-sheets in these samples could be controlled by adjusting the surfactants.Mono-dispersed spherical MoS_2 particles could be synthesized with PEG via the creation of MoS_2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers.Possible formation mechanisms of these MoS_2 samples created via surfactant-assisted hydrothermal processes are proposed.Further,the catalytic activities of MoS_2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor.The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity.Compared with the other catalysts,it had a smaller particle size,mono-dispersed spherical morphology,shorter slab length,and fewer stacked layers;these were all beneficial to exposing its active edges.This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures. 展开更多
关键词 Molybdenum sulfide Surfactant-assisted controllable morphology Mono-dispersed Active edges Anthracene hydrogenation
下载PDF
Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics
3
作者 Qiao Zhou Cenqi Yan +18 位作者 Hongxiang Li Zhendong Zhu Yujie Gao Jie Xiong Hua Tang Can Zhu Hailin Yu Sandra P.Gonzalez Lopez Jiayu Wang Meng Qin Jianshu Li Longbo Luo Xiangyang Liu Jiaqiang Qin Shirong Lu Lei Meng Frédéric Laquai Yongfang Li Pei Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期56-69,共14页
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta... Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality. 展开更多
关键词 Inverted organic photovoltaics Thermal stability Aramid nanofibers Morphology control Charge carrier dynamics
下载PDF
Morphology Control of Anatase TiO2 by Surfactant-assisted Hydrothermal Method 被引量:10
4
作者 王富民 石战胜 +2 位作者 巩峰 酒金亭 ADACHI Motonari 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期754-759,共6页
By hydrolysing titanium isopropoxide in a long hydrocarbon chain surfactant-containing solution, TiO2 fine particles with a diversity of well-defined morphologies was synthesized in this study by a hydrothermal route.... By hydrolysing titanium isopropoxide in a long hydrocarbon chain surfactant-containing solution, TiO2 fine particles with a diversity of well-defined morphologies was synthesized in this study by a hydrothermal route. The structural change during the formation process was monitored by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. TiO2 with various morphologies such as particle, sheet, rod, tube and flower-like shape was obtained by carefully controlling the preparation conditions. The experimental results show that the pH value is crucial for shape control of the produced TiO2 because it can change the charge state of the surfactant in the solution and the adsorption potential of the surfactant on the TiO2 surface. The shape evolvement of anatase TiO2 was elucidated by quenching the reaction at different stage and the formation mechanism of different shaped TiO2 was suggested. 展开更多
关键词 morphology control titanium dioxide charged state ANATASE
下载PDF
Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology 被引量:7
5
作者 Xiaojing Wan Ze Yu +6 位作者 Wenming Tian Fuzhi Huang Shengye Jin Xichuan Yang Yi-Bing Cheng Anders Hagfeldt Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期8-15,I0001,共9页
All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high... All-inorganic cesium lead bromide(CsPbBr3)perovskite is attracting growing interest as functional materials in photovoltaics and other optoelectronic devices due to its superb stability.However,the fabrication of high-quality CsPbBr3 films still remains a big challenge by solution-process because of the low solubility of the cesium precursor in common solvents.Herein,we report a facile solution-processed approach to prepare high-quality CsPbBr3 perovskite films via a two-step spin-coating method,in which the Cs Br methanol/H2 O mixed solvent solution is spin-coated onto the lead bromide films,followed by an isopropanol-assisted post-treatment to regulate the crystallization process and to control the film morphology.In this fashion,dense and uniform CsPbBr3 films are obtained consisting of large crystalline domains with sizes up to microns and low defect density.The effectiveness of the resulting CsPbBr3 films is further examined in perovskite solar cells(PSCs)with a simplified planar architecture of fluorine–doped tin oxide/compact Ti O2/CsPbBr3/carbon,which deliver a maximum power conversion efficiency of 8.11%together with excellent thermal and humidity stability.The present work offers a simple and effective strategy in fabrication of high-quality CsPbBr3 films for efficient and stable PSCs as well as other optoelectronic devices. 展开更多
关键词 All-inorganic perovskite solar cells CsPbBr3 Morphology control Solution-processed Stability
下载PDF
Controlled Synthesis and Application of α-Al_2O_3 for Lu_3Al_5O_(12): Ce^(3+) Green Spherical Phosphors 被引量:6
6
作者 LI Zhao WANG Yongfeng CAO Jing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1028-1031,共4页
Al2O3 powders with different morphologies,namely fibrous,sheet-like,and spherical,were prepared by the hydrothermal-thermolysis method.Subsequently,polycrystalline,transparent cerium doped lutetium aluminum garnet(Lu... Al2O3 powders with different morphologies,namely fibrous,sheet-like,and spherical,were prepared by the hydrothermal-thermolysis method.Subsequently,polycrystalline,transparent cerium doped lutetium aluminum garnet(Lu3Al5O(12):Ce^3+)green phosphors were synthesized by high temperature solidstate method using commercial lutetium(III)oxide,cerium(III)oxide,and as-prepared Al2O3 powders with different morphologies.The phases,morphologies,and photoluminescent properties of the prepared phosphors were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),and photoluminescence spectroscopy(PL).Moreover,the influences of the morphologies ofα-Al2O3 on the types of crystal structure,morphologies,and photoluminescent properties of LuAG:Ce^3+green phosphors were investigated.The results indicated that the morphologies and particle sizes of theα-Al2O3 powders could be controlled by the additives and parameters.Notably,the sphericalα-Al2O3 powders with good dispersibility were found to be the excellent base materials of LuAG:Ce^3+green phosphors for white light emitting diodes. 展开更多
关键词 alumina particles hydrothermal-thermolysis morphology control cerium doped lutetium aluminum garnet phosphor
下载PDF
Morphology Control of SrCO_3 Crystals using Complexons as Modifiers in the Ethanol-water mixtures 被引量:3
7
作者 张明轩 霍冀川 +2 位作者 于永生 崔彩萍 雷永林 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第10期1223-1229,共7页
Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlappin... Using SrC12-6H2O and Na2CO3 as the main raw materials and adding different complexons as modifiers with simple co-precipitation method, SrCO3 crystals with distinct morphologies like spherical, bundle-like, overlapping plate-like, hexagonal star-like, dumbbell-like, etc. can be synthesized in the ethanol-water mixtures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrograph (FT-IR). The interrelated effect mechanism is presented in the end. Results show that the modifier carboxyl groups play a significant role in controlling the SrCO3 crystal morphologies, which can alter the crystal growth unit (Sr^2+) supply mode and induce the crystal formation with the morphologies matching their spatial configurations. 展开更多
关键词 SrCO3 complexon MODIFIER morphology control ethanol-water mixtures
下载PDF
Morphology control of ultrafine cuprous oxide powder and its growth mechanism 被引量:2
8
作者 曹艳 王岳俊 +1 位作者 周康根 毕贞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期216-220,共5页
Four shapes of Cu2O particles as sphere,cube,truncated octahedron and octahedron were prepared via glucose reduction of Cu(Ⅱ)under alkaline condition.The products were characterized by XRD and SEM.The effects of the ... Four shapes of Cu2O particles as sphere,cube,truncated octahedron and octahedron were prepared via glucose reduction of Cu(Ⅱ)under alkaline condition.The products were characterized by XRD and SEM.The effects of the precursor(CuO,Cu(OH)2), reaction temperature and glucose concentration on morphology of Cu2O particles were investigated,and the mechanism of morphology control was discussed on the basic theory of crystal nucleation and growth.It is found that the Cu+supersaturation is remarkably influenced by the precursor kind,reaction temperature and glucose concentration,and the morphology of Cu2O particles can be controlled by the Cu+supersaturation. 展开更多
关键词 cuprous oxide morphology control SUPERSATURATION growth mechanism
下载PDF
Morphology control of aluminum nitride(AlN)for a novel high-temperature hydrogen sensor 被引量:1
9
作者 Angga Hermawan Yusuke Asakura Shu Yin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第11期1560-1567,共8页
Hydrogen is a promising renewable energy source for fossil-free transportation and electrical energy generation.However,leaking hydrogen in high-temperature production processes can cause an explosion,which endangers ... Hydrogen is a promising renewable energy source for fossil-free transportation and electrical energy generation.However,leaking hydrogen in high-temperature production processes can cause an explosion,which endangers production workers and surrounding areas.To detect leaks early,we used a sensor material based on a wide bandgap aluminum nitride(AlN)that can withstand a high-temperature environment.Three unique AlN morphologies(rod-like,nest-like,and hexagonal plate-like)were synthesized by a direct nitridation method at 1400℃usingγ-AlOOH as a precursor.The gas-sensing performance shows that a hexagonal plate-like morphology exhibited p-type sensing behavior and showed good repeatability as well as the highest response(S=58.7)toward a 750 ppm leak of H2 gas at high temperature(500°C)compared with the rod-like and nest-like morphologies.Furthermore,the hexagonal plate-like morphology showed fast response and recovery times of 40 and 82 s,respectively.The surface facet of the hexagonal morphology of AlN might be energetically favorable for gas adsorption–desorption for enhanced hydrogen detection. 展开更多
关键词 aluminum nitride controllable morphology direct nitridation γ-AlOOH hydrogen sensor
下载PDF
Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation 被引量:3
10
作者 DENG Qingchun MIAO Fang +5 位作者 ZHANG Bin LUO Mingliang LIU Hui LIU Xiaojiao QIN Fachao LIU Gangcai 《Journal of Arid Land》 SCIE CSCD 2015年第6期778-793,共16页
The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding ... The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings. 展开更多
关键词 gully plane form morphological parameters controlling factors Yuanmou Dry-hot Valley
下载PDF
Facile and controllable synthesis of BaCO_3 crystals superstructures using a CO_2-storage material
11
作者 Feng Sha Bo Guo +5 位作者 Jing Zhao Fei Zhang Xianshu Qiao Liang Ma Chang Liu Jianbin Zhang 《Green Energy & Environment》 SCIE 2017年第4期401-411,共11页
We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This... We here report a new CO_2 capture and storage method that converts CO_2 into a novel alkyl carbonate salt, denoted as CO_2 SM, by a system consisting of equimolar 1,4-butanediol(BDO) and 1,2-ethylenediamine(EDA). This novel CO_2 SM was then used to prepare BaCO_3 crystals through a simple and fast hydrothermal synthesis under mild conditions. The CO_2 SM was both the source of CO_2 and the modifier to regulate the nucleation and growth of BaCO_3 crystals. The morphology of the BaCO_3 crystals could be tuned from rod to shuttle by adjusting the key influencing factors, including CO_2 SM concentration, mineralization temperature, and mineralization time. A possible mechanism for the synthesis of BaCO_3 crystals from the CO_2 SM was also presented. After the BaCO_3 crystals were isolated, the filtrate of the hydrothermal reaction could be recycled to again absorb CO_2 and prepare BaCO_3 crystals of the same polymorph. This novel approach appears promising for preparing well-formed metal carbonates. 展开更多
关键词 BACO3 CO2-storage material Morphology control CO2 capture and utilization
下载PDF
Built-in electric field induced S-scheme g-C_(3)N_(4)homojunction for efficient photocatalytic hydrogen evolution:Interfacial engineering and morphology control 被引量:1
12
作者 Yongpan Gu Yike Li +2 位作者 Haoqiang Feng Yanan Han Zhongjun Li 《Nano Research》 SCIE EI CSCD 2024年第6期4961-4970,共10页
S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-sche... S-scheme possesses superior redox capabilities compared with the II-scheme,providing an effective method to solve the innate defects of g-C_(3)N_(4)(CN).In this study,S-doped g-C_(3)N_(4)/g-C_(3)N_(4)(SCN-tm/CN)S-scheme homojunction was constructed by rationally integrating morphology control with interfacial engineering to enhance the photocatalytic hydrogen evolution performance.In-situ Kelvin probe force microscopy(KPFM)confirms the transport of photo-generated electrons from CN to SCN.Density functional theory(DFT)calculations reveal that the generation of a built-in electric field between SCN and CN enables the carrier separation to be more efficient and effective.Femtosecond transient absorption spectrum(fs-TAS)indicates prolonged lifetimes of SCN-tm/CN_(3)(τ1:9.7,τ2:110,andτ3:1343.5 ps)in comparison to those of CN(τ1:4.86,τ2:55.2,andτ3:927 ps),signifying that the construction of homojunction promotes the separation and transport of electron hole pairs,thus favoring the photocatalytic process.Under visible light irradiation,the optimized SCN-tm/CN_(3)exhibits excellent photocatalytic activity with the hydrogen evolution rate of 5407.3μmol·g^(−1)·h^(−1),which is 20.4 times higher than that of CN(265.7μmol·g^(−1)·h^(−1)).Moreover,the homojunction also displays an apparent quantum efficiency of 26.8%at 435 nm as well as ultra-long and ultra-stable cycle ability.This work offers a new strategy to construct highly efficient photocatalysts based on the metal-free conjugated polymeric CN for realizing solar energy conversion. 展开更多
关键词 HOMOJUNCTION built-in electric field morphology control interfacial engineering carrier separation
原文传递
Co-enhancement of thermal conduction and radiation through morphologies controlling of graphene functional layer for chip thermal management
13
作者 Shuting Cheng Kun Wang +19 位作者 Shichen Xu Yi Cheng Ruojuan Liu Kewen Huang Hao Yuan Wenjuan Li Yuyao Yang Fushun Liang Fan Yang Kangyi Zheng Zhiwei Liang Ce Tu Mengxiong Liu Xiaomin Yang Jingnan Wang Xuzhao Gai Yuejie Zhao Xiaobai Wang Yue Qi Zhongfan Liu 《Nano Research》 SCIE EI CSCD 2024年第10期8885-8892,共8页
With the continuous advancements in electronics towards downsizing and integration,efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency.The fan-... With the continuous advancements in electronics towards downsizing and integration,efficient thermal dissipation from chips has emerged as a critical factor affecting their lifespan and operational efficiency.The fan-less chip cooling system has two critical interfaces for thermal transport,which are the contact interface between the base and the chip dominated by thermal conduction,and the surface of the fins dominated by thermal radiation.The different thermal transfer modes of these two critical interfaces pose different requirements for thermal management materials.In the study,a novel approach was proposed by developing graphene thermal transport functional material whose morphology could be intentionally designed via reformed plasmaenhanced chemical vapor deposition(PECVD)methods to meet the diverse requirements of heat transfer properties.Specifically,graphene with multilevel branching structure of vertical graphene(BVG)was fabricated through the hydrogenassisted PECVD(H_(2)-PECVD)strategy,which contributed a high emissivity of~0.98.BVG was deposited on the fins’surface and functioned as the radiation enhanced layer to facilitate the rapid radiation of heat from the heat sinks into the surrounding air.Meanwhile,the well-oriented vertical graphene(OVG)was successfully prepared through the vertical electric field-assisted PECVD process(EF-PECVD),which showed a high directional thermal conductivity of~53.5 W·m^(-1)·K^(-1).OVG was deposited on the contact interface and functioned as the thermal conduction enhanced layer,allowing for the quick transmission of heat from the chip to the heat sink.Utilizing this design concept,the two critical interfaces in the chip cooling system can be jointly enhanced,resulting in a remarkable cooling efficiency enhancement of~30.7%,demonstrating that this novel material possessed enormous potential for enhancing the performance of cooling systems.Therefore,this research not only provided new design concepts for the cooling system of electronic devices but also opened up new avenues for the application of graphene materials in thermal management. 展开更多
关键词 chip thermal management thermal conduction thermal radiation GRAPHENE morphology control
原文传递
Morphology-controlled synthesis of multi-metal-based spinel oxide nanocatalysts and their performance for oxygen reduction
14
作者 Can Li Jinfong Pan +6 位作者 Xiaobo Chen Lihua Zhang Anna Dennett Prabhu Bharathan Douglas Lee Guangwen Zhou Jiye Fang 《Electron》 2024年第3期13-19,共7页
We present a one-pot colloidal synthesis method for producing monodisperse multi-metal(Co,Mn,and Fe)spinel nanocrystals(NCs),including nanocubes,nano-octahedra,and concave nanocubes.This study explores the mechanism o... We present a one-pot colloidal synthesis method for producing monodisperse multi-metal(Co,Mn,and Fe)spinel nanocrystals(NCs),including nanocubes,nano-octahedra,and concave nanocubes.This study explores the mechanism of morphology control,showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface.The cubic spinel NCs,terminated with exclusive{100}-facets,demonstrate superior electrocatalytic activity for the oxygen reduction reaction(ORR)in alkaline media compared to their octahedral and concave cubic counterparts.Specifically,at 0.85 V,(CoMn)Fe_(2)O_(4) spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability,highlighting the promising ORR performance associated with{100}-facets of multi-metal spinel oxides over other low-index and high-index facets.Motivated by exploring the correlation between ORR performance and surface atom arrangement(active sites),surface element composition,as well as other factors,this study introduces a prospective approach for shapecontrolled synthesis of advanced spinel oxide NCs.It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts. 展开更多
关键词 alkaline media morphology control multi-metal spinel catalyst NANOCRYSTALS oxygen reduction
原文传递
Research progress of Ag_3PO_4-based photocatalyst: Fundamentals and performance enhancement 被引量:3
15
作者 马运柱 成帆 +2 位作者 刘文胜 王娟 王依锴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期112-121,共10页
Ag3PO4 is found to be a highly efficient photocatalyst and receives great attention. The high activity of the photocatalyst is credited to the intrinsic electronic structure. The morphology control and nano-composite ... Ag3PO4 is found to be a highly efficient photocatalyst and receives great attention. The high activity of the photocatalyst is credited to the intrinsic electronic structure. The morphology control and nano-composite fabrication are used to improve the performance and practicability. This paper reviews the structure, properties and some theoretical aspects of Ag3PO4 single crystal. Also, the major strategies, namely the morphology control and hetero-nanostructure construction, as ways to improve the performance of Ag3PO4-based photocatalysts, are summarized with the aid of some typical instances. 展开更多
关键词 Ag3PO4-based photocatalyst electronic structure morphology control hetero-structure construction preparation photocatalytic activity
下载PDF
Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting:Competitiveness,challenges,and future perspectives 被引量:2
16
作者 Zheng Zhu Shipeng Wan +7 位作者 Yunxia Zhao Yaxin Gu Yaobin Wang Yong Qin Zhihui Zhang Xinlei Ge Qin Zhong Yunfei Bu 《Materials Reports(Energy)》 2021年第2期22-34,共13页
The efficient utilization of photocatalytic technology is essential for clean energy.Bismuth-based multimetal oxides(Bi_(2)WO_(6),Bi_(2)MoO_(6),BiVO_(4)and Bi_(4)Ti_(3)O_(12))have aroused widespread attention as a vis... The efficient utilization of photocatalytic technology is essential for clean energy.Bismuth-based multimetal oxides(Bi_(2)WO_(6),Bi_(2)MoO_(6),BiVO_(4)and Bi_(4)Ti_(3)O_(12))have aroused widespread attention as a visible light responsive photocatalyst for hydrogen evolution due to their low cost,nontoxicity,modifiable morphology,and outstanding optical and chemical properties.Nevertheless,the photocatalytic activities of pure materials are unsatisfactory because of their relative small specific surface area,poor quantum yield,and the rapid recombination of photogenerated carriers.Therefore,some modification strategies,including morphological control,semiconductor combination,doping,and defect engineering,have been systematically studied to enhance photocatalytic H_(2)evolution activity in the past few years.Herein,we summarize the recent research progress on bismuth-based photocatalysts,pointing out the prospects,opportunities and challenges of bismuth-based photocatalysts.Eventually,we aims to put forward valuable suggestions for designing of bismuth-based photocatalysts applied in hydrogen production on the premise of consolidating the existing theoretical basis of photocatalysis. 展开更多
关键词 Bi_(2)WO_(6) Bi_(2)MoO_(6) BiVO_(4) Bi_(4)Ti_(3)O_(12) morphological control Semiconductor combination HETEROJUNCTION Doping Defect Hydrogen production
下载PDF
Effects of PSMA and experimental conditions on the morphologies of BaCO_3 whiskers
17
作者 CHENG Bei YU Xiaoxiao YU Jiaguo ZHAO Xiujian 《Rare Metals》 SCIE EI CAS CSCD 2006年第4期382-388,共7页
BaCO3 whiskers exhibiting different morphologies were fabricated by a simple precipitation reaction of barium ch/oride with sodium carbonate in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as ... BaCO3 whiskers exhibiting different morphologies were fabricated by a simple precipitation reaction of barium ch/oride with sodium carbonate in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal growth modifier at room temperature. The as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The influences of experimental parameters on the size and morphology of BaCO3 whiskers were investigated and discussed. It was found that the as-prepared BaCO3 whiskers are single crystals with diameter ranging from 100 to 300 run, and grow along the crystallographic a-axis or [100] direction. BaCO3 whiskers with different morphologies, such as branching and dendritic structure, can be obtained depending on the experimental conditions. With increasing PSMA concentration, the diameter of BaCO3 whiskers decreases. 展开更多
关键词 BaCO3 whiskers morphological control poly-(styrene-alt-maleic acid) single crystal
下载PDF
Recent advances on Bi_(2)WO_(6)‐based photocatalysts for environmental and energy applications 被引量:11
18
作者 Tong Chen Lizhen Liu +1 位作者 Cheng Hu Hongwei Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1413-1438,共26页
Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of ... Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts. 展开更多
关键词 Bi2WO6 PHOTOCATALYST Morphology control Atomic modulation Composite fabrication
下载PDF
Synthesization and crystallization mechanism of nano-scale γ-AlOOH with various morphologies 被引量:6
19
作者 Bao-hong Hao Ke-ming Fang +1 位作者 Lan Xiang Qiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期376-379,共4页
Nano-scale γ-AIOOH with various morphologies, such as whisker, bar, ball, and sheet, was synthesized successfully and control- lably through a facile hydrothermal method just by adjusting the pH value of the solvent.... Nano-scale γ-AIOOH with various morphologies, such as whisker, bar, ball, and sheet, was synthesized successfully and control- lably through a facile hydrothermal method just by adjusting the pH value of the solvent. Based on the analysis of the experimental data, the growth mechanism of nano-scale γ-AlOOH in the hydrothermal process was established. It is proposed that the growth unit and the growth direction are determined by the pH value of the solution and the growth unit, respectively. One-dimensional γ-AlOOH, such as whisker and bar, is formed in lower pH ranges, while two-dimensional γ-AlOOH sueli as sheet is formed only in high pH environment following the plane expansion crystallization mechanism. 展开更多
关键词 BOEHMITE morphology control crystallization mechanism growth unit AGGREGATE
下载PDF
Photovoltaic-powered supercapacitors for driving overall water splitting:A dual-modulated 3D architecture 被引量:3
20
作者 Zixu Sun Lijuan Sun +7 位作者 See Wee Koh Junyu Ge Jipeng Fei Mengqi Yao Wei Hong Shude Liu Yusuke Yamauchi Hong Li 《Carbon Energy》 SCIE CAS 2022年第6期1262-1273,共12页
Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven ... Due to the growing demand for clean and renewable hydrogen fuel,there has been a surge of interest in electrocatalytic water-splitting devices driven by renewable energy sources.However,the feasibility of self-driven water splitting is limited by inefficient connections between functional modules,lack of highly active and stable electrocatalysts,and intermittent and unpredictable renewable energy supply.Herein,we construct a dualmodulated three-dimensional(3D)NiCo_(2)O_(4)@NiCo_(2)S_(4)(denoted as NCONCS)heterostructure deposited on nickel foam as a multifunctional electrode for electrocatalytic water splitting driven by photovoltaic-powered supercapacitors.Due to a stable 3D architecture configuration,abundant active sites,efficient charge transfer,and tuned interface properties,the NCONCS delivers a high specific capacity and rate performance for supercapacitors.A twoelectrode electrolyzer assembled with the NCONCS as both the anode and the cathode only requires a low cell voltage of 1.47 V to achieve a current density of 10 mA cm^(−2) in alkaline electrolyte,which outperforms the state-of-the-art bifunctional electrocatalysts.Theoretical calculations suggest that the generated heterointerfaces in NCONCS improve the surface binding capability of reaction intermediates while regulating the local electronic structures,which thus accelerates the reaction kinetics of water electrolysis.As a proof of concept,an integrated configuration comprising a two-electrode electrolyzer driven by two series-connected supercapacitors charged by a solar cell delivers a high product yield with superior durability. 展开更多
关键词 hybrid energy systems interface engineering morphology control solar-to-hydrogen trifunctional electrode
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部