Objectives To assess long-term coronary arterial response to biodegradable polymer-coated sirolimus-eluting stent(BSES) in vivo by using virtual histology intravascular ultrasound(VH-IVUS).Methods 41 patients were enr...Objectives To assess long-term coronary arterial response to biodegradable polymer-coated sirolimus-eluting stent(BSES) in vivo by using virtual histology intravascular ultrasound(VH-IVUS).Methods 41 patients were enrolled in this study and VH-IVUS was performed to assess the native artery vascular responses to BSES compared with durable polymer-coated SES(DSES) during long-term follow-up(median =8 months).The presence of necrotic core abutting to the lumen was evaluated at follow-up.Results With similar in-stent late luminal loss(0.15[0.06,0.30]vs 0.19[0.03, 0.30]mm,P=0.772),the overall incidence of necrotic core abutting to the lumen was significantly less in BSES than DSES group(44%vs.63%,P=0.019)(proximal 18%,stented site 14%and distal 12%in BSES group,proximal 19%, stented site 28%and distal 16%in DSES group).Compared with stented segments each other,the DSES -treated segments had a significant higher incidence of necrotic core abutting to the lumen through the stent struts(73%vs.36%, P=0.005).In addition,more multiple necrotic core abutting to the lumen was observed in DSES group(overall:63%vs. 36%,P=0.015).Furthermore,among the total number of stented segments with necrotic core abutting to the lumen, DSES -treated lesions had more multiple necrotic core abutting to the lumen through the stent struts than BSES -treated lesions in evidence(74%vs.33%,P=0.027).Conclusions By VH-IVUS analysis at follow-up,a greater frequency of stable lesion morphometry was shown in lesions treated with BSESs compared with lesions treated with DSESs.The major reason was BSES produced less toxicity to the arterial wall and facilitated neointimal healing as a result of polymer coating on drug-eluting stent(DES) surface biodegraded as time went by.展开更多
Objective To evaluate the efficacy and the mechanism of application of selective head cooling on neuronal morphological damage during postischemic reperfusion in a rabbit model.Methods 168 New Zealand rabbits were r...Objective To evaluate the efficacy and the mechanism of application of selective head cooling on neuronal morphological damage during postischemic reperfusion in a rabbit model.Methods 168 New Zealand rabbits were randomized into three groups. Group Ⅰ [n=24, (38±0.5)℃, non-ischemic control]; Group Ⅱ [n=72, (38±0.5)℃, normothermic reperfusion]; Group Ⅲ [n=72, (28±0.5)℃, selective head cooling, initiated at the beginning of reperfusion). Animals in three subgroups (n=24, each) of Group Ⅱ and Group Ⅲ had reperfused lasting for 30, 180 and 360 min respectively. Using computerized image analysis technique on morphological changes of nucleus, the degree of neuronal damage in 12 regions were differentiated into type A (normal), type B (mild damaged), type C (severely damaged) and type D (necrotic). Fourteen biochemical parameters in brain tissues were measured.[KH*2/5D]Results As compared with Group Ⅰ, the counts of type A neuron decreased progressively, and those of type B, C and D increased significantly in Group Ⅱ during reperfusion (P【0.01). In Group Ⅱ, vasoactive intestinal peptide, b-endorphine, prostacyclin, T 3 and Na +, K +-ATPase were correlated with the changes of type A; b-endorphine and thromboxane with type B; glucose and vasopressin with type C; Na +, K +-ATPase, glutamic acid, T 3 and vasoactive intestinal peptide with type D (P【0.05). As compared with Group Ⅱ, the counts of type A increased, and those of type C and D significantly decreased in Group Ⅲ (P【0.01). In Group Ⅲ, Ca 2+ , Mg 2+ -ATPase were correlated with the changes of type A, C and D (P【0.01). Conclusion Selective head cooling for sex hours during postischemic reperfusion does improve neuronal morphological outcomes in terms of morphological changes.展开更多
文摘Objectives To assess long-term coronary arterial response to biodegradable polymer-coated sirolimus-eluting stent(BSES) in vivo by using virtual histology intravascular ultrasound(VH-IVUS).Methods 41 patients were enrolled in this study and VH-IVUS was performed to assess the native artery vascular responses to BSES compared with durable polymer-coated SES(DSES) during long-term follow-up(median =8 months).The presence of necrotic core abutting to the lumen was evaluated at follow-up.Results With similar in-stent late luminal loss(0.15[0.06,0.30]vs 0.19[0.03, 0.30]mm,P=0.772),the overall incidence of necrotic core abutting to the lumen was significantly less in BSES than DSES group(44%vs.63%,P=0.019)(proximal 18%,stented site 14%and distal 12%in BSES group,proximal 19%, stented site 28%and distal 16%in DSES group).Compared with stented segments each other,the DSES -treated segments had a significant higher incidence of necrotic core abutting to the lumen through the stent struts(73%vs.36%, P=0.005).In addition,more multiple necrotic core abutting to the lumen was observed in DSES group(overall:63%vs. 36%,P=0.015).Furthermore,among the total number of stented segments with necrotic core abutting to the lumen, DSES -treated lesions had more multiple necrotic core abutting to the lumen through the stent struts than BSES -treated lesions in evidence(74%vs.33%,P=0.027).Conclusions By VH-IVUS analysis at follow-up,a greater frequency of stable lesion morphometry was shown in lesions treated with BSESs compared with lesions treated with DSESs.The major reason was BSES produced less toxicity to the arterial wall and facilitated neointimal healing as a result of polymer coating on drug-eluting stent(DES) surface biodegraded as time went by.
文摘Objective To evaluate the efficacy and the mechanism of application of selective head cooling on neuronal morphological damage during postischemic reperfusion in a rabbit model.Methods 168 New Zealand rabbits were randomized into three groups. Group Ⅰ [n=24, (38±0.5)℃, non-ischemic control]; Group Ⅱ [n=72, (38±0.5)℃, normothermic reperfusion]; Group Ⅲ [n=72, (28±0.5)℃, selective head cooling, initiated at the beginning of reperfusion). Animals in three subgroups (n=24, each) of Group Ⅱ and Group Ⅲ had reperfused lasting for 30, 180 and 360 min respectively. Using computerized image analysis technique on morphological changes of nucleus, the degree of neuronal damage in 12 regions were differentiated into type A (normal), type B (mild damaged), type C (severely damaged) and type D (necrotic). Fourteen biochemical parameters in brain tissues were measured.[KH*2/5D]Results As compared with Group Ⅰ, the counts of type A neuron decreased progressively, and those of type B, C and D increased significantly in Group Ⅱ during reperfusion (P【0.01). In Group Ⅱ, vasoactive intestinal peptide, b-endorphine, prostacyclin, T 3 and Na +, K +-ATPase were correlated with the changes of type A; b-endorphine and thromboxane with type B; glucose and vasopressin with type C; Na +, K +-ATPase, glutamic acid, T 3 and vasoactive intestinal peptide with type D (P【0.05). As compared with Group Ⅱ, the counts of type A increased, and those of type C and D significantly decreased in Group Ⅲ (P【0.01). In Group Ⅲ, Ca 2+ , Mg 2+ -ATPase were correlated with the changes of type A, C and D (P【0.01). Conclusion Selective head cooling for sex hours during postischemic reperfusion does improve neuronal morphological outcomes in terms of morphological changes.