Digital Image Processing(DIP)is a well-developed field in the biological sciences which involves classification and detection of tumour.In medical science,automatic brain tumor diagnosis is an important phase.Brain tu...Digital Image Processing(DIP)is a well-developed field in the biological sciences which involves classification and detection of tumour.In medical science,automatic brain tumor diagnosis is an important phase.Brain tumor detection is performed by Computer-Aided Diagnosis(CAD)systems.The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes.Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research.Brain tumor diagnosis mainly performed for obtaining exact location,orientation and area of abnormal tissues.Cancer and edema regions inference from brain magnetic resonance imaging(MRI)information is considered to be great challenge due to brain tumors complex structure,blurred borders,besides exterior features like noise.The noise compassion is mainly reduced along with segmentation stability by suggesting efficient hybrid clustering method merged with morphological process for brain cancer segmentation.Combined form of Median Modified Wiener filter(CMMWF)is chiefly deployed for denoising,and morphological operations which in turn eliminate nonbrain tissue,efficiently dropping technique’s sensitivity to noise.The proposed system contains the main phases such as preprocessing,brain tumor extraction and post processing.Image segmentation is greatly achieved by presenting Intuitionist Possibilistic Fuzzy Clustering(IPFC)algorithm.The algorithm’s stability is greatly enhanced by this clustering along with clustering parameters sensitivity reduction.Then,the post processing of images are done through morphological operations along with Hybrid Median filtering(HMF)for attaining exact tumors representations.Additionally,suggested algorithm is substantiated by comparing with other existing segmentation algorithms.The outcomes reveal that suggested algorithm achieves improved outcomes pertaining to accuracy,sensitivity,specificity,and recall.展开更多
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ...Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.展开更多
文摘Digital Image Processing(DIP)is a well-developed field in the biological sciences which involves classification and detection of tumour.In medical science,automatic brain tumor diagnosis is an important phase.Brain tumor detection is performed by Computer-Aided Diagnosis(CAD)systems.The human image creation is greatly achieved by an approach namely medical imaging which is exploited for medical and research purposes.Recently Automatic brain tumor detection from MRI images has become the emerging research area of medical research.Brain tumor diagnosis mainly performed for obtaining exact location,orientation and area of abnormal tissues.Cancer and edema regions inference from brain magnetic resonance imaging(MRI)information is considered to be great challenge due to brain tumors complex structure,blurred borders,besides exterior features like noise.The noise compassion is mainly reduced along with segmentation stability by suggesting efficient hybrid clustering method merged with morphological process for brain cancer segmentation.Combined form of Median Modified Wiener filter(CMMWF)is chiefly deployed for denoising,and morphological operations which in turn eliminate nonbrain tissue,efficiently dropping technique’s sensitivity to noise.The proposed system contains the main phases such as preprocessing,brain tumor extraction and post processing.Image segmentation is greatly achieved by presenting Intuitionist Possibilistic Fuzzy Clustering(IPFC)algorithm.The algorithm’s stability is greatly enhanced by this clustering along with clustering parameters sensitivity reduction.Then,the post processing of images are done through morphological operations along with Hybrid Median filtering(HMF)for attaining exact tumors representations.Additionally,suggested algorithm is substantiated by comparing with other existing segmentation algorithms.The outcomes reveal that suggested algorithm achieves improved outcomes pertaining to accuracy,sensitivity,specificity,and recall.
基金Financial support from the following projects and organisa- tions are acknowledged: the China One Thousand Talent Scheme, the National Natural Science Foundation of China (NNSFC) under its Major Research Scheme of Meso-scale Mechanism and Control in Multi-phase Reaction Processes (project reference: 91434126), the Natural Science Foundation of Guangdong Province (project reference: 2014A030313228), the UK Engineering and Physical Sciences Research Council (EPSRC) for the projects of Shape (EP/C009541) and StereoVision (EP/E045707), and the Technology Strategy Board (TSB) for the project of High Value Manufacturing CGM (TP/BD059E).
文摘Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.