The organic solvents are not only utilized in industrial processes,but also as drugs of abuse.In fact,solvent consumption represents the fourth option for drug users just after alcohol,tobacco and marijuana.In humans,...The organic solvents are not only utilized in industrial processes,but also as drugs of abuse.In fact,solvent consumption represents the fourth option for drug users just after alcohol,tobacco and marijuana.In humans,intentional inhalation of volatile drugs impairs the function of central nervous system,展开更多
Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- t...Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.展开更多
Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population...Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency.展开更多
The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance ...The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (Pn), soluble protein content, and superoxide dismutase (SOD) actix, ity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on Pn, soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M.. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.展开更多
基金supported by PhD CONACyT fellowship No.736339funded by CONACyT grants No.268062 and No.2015-01465
文摘The organic solvents are not only utilized in industrial processes,but also as drugs of abuse.In fact,solvent consumption represents the fourth option for drug users just after alcohol,tobacco and marijuana.In humans,intentional inhalation of volatile drugs impairs the function of central nervous system,
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-316)the National Natural Science Foundation of China (31070477,30870471)the West Light Foundation of the Chinese Academy of Sciences (XBBS201105)
文摘Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.
基金supported by the Ministry of Science and Technology of China(2011CB100305,2012AA100304)National Natural Science Foundation of China(31172015,31421092,31572186)+2 种基金Danish Strategic Research Council(NUTRIEFFICIENT 10-093498)European Community the Seventh Framework Programme for Research(NUE-CROPSFP7-CP-IP 222645)Chinese Universities Scientific Fund(2015ZH001)
文摘Maize(Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen(N) de ficiency,but the underlying genetic architecture remains to be investigated Using an advanced BC_4F_3 population,we investigated the root growth plasticity under two contrasted N levels and identi fied the quantitative trait loci(QTLs) with QTL-environment(Q×E)interaction effects. Principal components analysis(PCA) on changes of root traits to N de ficiency(D LN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC,while root traits scattered highly on PC_2 and PC_3. Hierarchical cluster analysis on traits for D LN-HN further assigned the BC_4F_3 lines into six groups,in which the special phenotypic responses to N de ficiency was presented These results revealed the complicated root plasticity of maize in response to N de ficiency that can be caused by genotype environment(G×E) interactions. Furthermore,QTL mapping using a multi-environment analysis identi fied 35 QTLs for root traits. Nine of these QTLs exhibited signi ficant Q×E interaction effects. Taken together,our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N de ficiency,which will be useful for developing maize tolerance cultivars to N de ficiency.
基金supported by the National Natural Science Foundation of China (No.30570113)the Research Fund for the Doctoral Program of Higher Education (No.20060335008),China
文摘The increasingly serious problem of acid rain is leading to increased potassium (K) loss from soils, and in our field investigation, we found that even congenerically relative Mosla species show different tolerance to K-deficiency. A hydroponic study was conducted on the growth of two Mosla species and their morphological, physiological and stoichiometric traits in response to limited (0.35 mmol K/L), normal (3.25 mmol K/L) and excessive (6.50 mmol K/L) K concentrations. Mosla hangchowensis is an endangered plant, whereas Mosla dianthera a widespread weed. In the case of M. hangchowensis, in comparison with normal K concentration, K-limitation induced a significant reduction in net photosynthetic rate (Pn), soluble protein content, and superoxide dismutase (SOD) actix, ity, but an increase in malondialdehyde (MDA) concentration. However, leaf mass ratio (LMR) and root mass ratio (RMR) were changed little by K-limitation. In contrast, for M. dianthera, K-limitation had little effect on Pn, soluble protein content, SOD activity, and MDA concentration, but increased LMR and RMR. Critical values of N (nitrogen):K and K:P (phosphorus) ratios in the shoots indicated that limitation in acquiring K occurred under K-limited conditions for M. hangchowensis but not for M. dianthera. We found that low K content in natural habitats was a restrictive factor in the growth and distribution of M.. hangchowensis, and soil K-deficiency caused by acid rain worsened the situation of M. hangchowensis, while M. dianthera could well acclimate to the increasing K-deficiency. We suggest that controlling the acid rain and applying K fertilizers may be an effective way to rescue the endangered M. hangchowensis.