High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi...High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes.展开更多
A type of azobenzene-containing block copolymer polymethyl methacrylate-b-poly (n-butylmethacrylate-co-6-(4-(phenylazo) benzoate) hexyl methacrylate) (PMMA-b-(PnBMA-co-PAzoMA)) was synthesized by the atom transfer rad...A type of azobenzene-containing block copolymer polymethyl methacrylate-b-poly (n-butylmethacrylate-co-6-(4-(phenylazo) benzoate) hexyl methacrylate) (PMMA-b-(PnBMA-co-PAzoMA)) was synthesized by the atom transfer radical polymerization (ATRP). Macroinitiator polymethyl methacrylate (PMMA) was prepared by ATRP and used to initiate the copolymerization of monomer n-butyl methacrylate (nBMA) and azobenzene-based methacrylate monomer (AzoMA). Herein, three block copolymers with different molecular weights and block volume fractions were obtained and spin-coated on a silicon substrate or quartz plate before annealing at 180℃ for 14 h. The surface morphologies in these annealed copolymer films were observed by atomic force microscopy (AFM). Bicontinuous stripe or island patterns with different sizes were formed dependent on the film thickness. These ordered patterns are considered to be formed arising from the dewetting process of the surface layer in the copolymer film. Photoisomerization of azobenzene units in the copolymer films changed the dewetting behaviors of the surface layer of the thin film. Therefore, some copolymer annealed films showed a reversible morphology conversion between bicontinuous stripe and island structure when exposed to UV light and upon being stored in the dark. It was found that the composition of the block copolymer had obvious influences on the photoinduced morphology conversion behaviors in these copolymer thin films. When the volumes of PnBMA and PAzoMA phases in the block copolymer were large enough, the surface morphology could be modulated by UV light irradiation and storage in the dark. This work proposes a new possibility for photoinduced control and design of the dewetting processes of thin films using a linear block copolymer.展开更多
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi...It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.展开更多
Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece...Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.展开更多
Organic solar cells(OSCs)have demonstrated over 19%power conversion efficiency(PCE)with the help of material innovation and device optimization.Co-working with newly designed materials,traditional solvent additives,1-...Organic solar cells(OSCs)have demonstrated over 19%power conversion efficiency(PCE)with the help of material innovation and device optimization.Co-working with newly designed materials,traditional solvent additives,1-chloronaphthalene(CN),and 1,8-diodooctane(DIO)are still powerful in morphology modulation towards satisfying efficiencies.Here,we chose recently reported high-performance polymer donors(PM6&D18-Fu)and small molecular acceptors(Y6&L8-BO)as active layer materials and processed them by different conditions(CN or DIO or none).Based on corresponding 12 groups of device results,and their film morphology characterizations(both ex-situ and in-situ ones),the property-performance relationships are revealed case by case.It is thereby supposed to be taken as a successful attempt to demonstrate the importance and complexity of donor-acceptoradditive interaction,since the device performance and physics analyses are also tightly combined with morphology variation.Furthermore,ternary blend construction for PCE improvement provides an approaching 19%level and showcases the potential of understanding-guided-optimization(UGO)in the future of OSCs.展开更多
基金supported by the National Natural Science Foundation of China(52104309,52272021)the Natural Science Foundation of Hubei Province(2021CFB010)。
文摘High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes.
基金supported by the Natural Science Foundation of Zhejiang Province (No. Y4110187)the State Key Laboratory of Chemical Engineering (No. SKL-ChE-11D04)the Fundamental Research Funds for the Central Universities (No. 2013FZA4019), China
文摘A type of azobenzene-containing block copolymer polymethyl methacrylate-b-poly (n-butylmethacrylate-co-6-(4-(phenylazo) benzoate) hexyl methacrylate) (PMMA-b-(PnBMA-co-PAzoMA)) was synthesized by the atom transfer radical polymerization (ATRP). Macroinitiator polymethyl methacrylate (PMMA) was prepared by ATRP and used to initiate the copolymerization of monomer n-butyl methacrylate (nBMA) and azobenzene-based methacrylate monomer (AzoMA). Herein, three block copolymers with different molecular weights and block volume fractions were obtained and spin-coated on a silicon substrate or quartz plate before annealing at 180℃ for 14 h. The surface morphologies in these annealed copolymer films were observed by atomic force microscopy (AFM). Bicontinuous stripe or island patterns with different sizes were formed dependent on the film thickness. These ordered patterns are considered to be formed arising from the dewetting process of the surface layer in the copolymer film. Photoisomerization of azobenzene units in the copolymer films changed the dewetting behaviors of the surface layer of the thin film. Therefore, some copolymer annealed films showed a reversible morphology conversion between bicontinuous stripe and island structure when exposed to UV light and upon being stored in the dark. It was found that the composition of the block copolymer had obvious influences on the photoinduced morphology conversion behaviors in these copolymer thin films. When the volumes of PnBMA and PAzoMA phases in the block copolymer were large enough, the surface morphology could be modulated by UV light irradiation and storage in the dark. This work proposes a new possibility for photoinduced control and design of the dewetting processes of thin films using a linear block copolymer.
基金the National Natural Science Foundation of China(21671096,21603094 and21905180)the Natural Science Foundation of Guangdong Province(2018B030322001 and 2018A030310225)+4 种基金Shenzhen Peacock Plan(KQTD2016022620054656)Shenzhen Key Laboratory Project(ZDSYS201603311013489)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(JCYJ20190809115413414)the Science and Technology Development Fund from Macao SAR(FDCT–0102/2019/A2,FDCT–0035/2019/AGJ and FDCT–0154/2019/A3)the Multi-Year Research Grants(MYRG2017–00027–FST and MYRG2018–00003–IAPME)from the University of Macao。
文摘It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.
基金supported by the National Natural Science Foundation of China(21971185)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano)the"111"Project of The State Administration of Foreign Experts Affairs of China。
文摘Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.
基金Research Grants Council of Hong Kong,Grant/Award Numbers:15221320,C5037-18GRGC Senior Research Fellowship Scheme,Grant/Award Number:SRFS2223-5S01+5 种基金Shenzhen Science and Technology Innovation Commission,Grant/Award Number:JCYJ20200109105003940Hong Kong Polytechnic University Internal Research Funds:Sir Sze-yuen Chung Endowed Professorship Fund,Grant/Award Number:8-8480RISE(Q-CDBK),Grant/Award Numbers:G-SAC5,1-YW4CGuangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices,Grant/Award Number:2019B121205001Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2022A1515010875,2021A1515110017Natural Science Foundation of Top Talent of SZTU,。
文摘Organic solar cells(OSCs)have demonstrated over 19%power conversion efficiency(PCE)with the help of material innovation and device optimization.Co-working with newly designed materials,traditional solvent additives,1-chloronaphthalene(CN),and 1,8-diodooctane(DIO)are still powerful in morphology modulation towards satisfying efficiencies.Here,we chose recently reported high-performance polymer donors(PM6&D18-Fu)and small molecular acceptors(Y6&L8-BO)as active layer materials and processed them by different conditions(CN or DIO or none).Based on corresponding 12 groups of device results,and their film morphology characterizations(both ex-situ and in-situ ones),the property-performance relationships are revealed case by case.It is thereby supposed to be taken as a successful attempt to demonstrate the importance and complexity of donor-acceptoradditive interaction,since the device performance and physics analyses are also tightly combined with morphology variation.Furthermore,ternary blend construction for PCE improvement provides an approaching 19%level and showcases the potential of understanding-guided-optimization(UGO)in the future of OSCs.