期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
基于特征与数据增强的城市街景实例分割算法
1
作者 李成严 车子轩 郑企森 《哈尔滨理工大学学报》 CAS 北大核心 2024年第2期25-32,共8页
城市街景分割是智能交通领域中一项关键的技术,对于城市街景环境中的客观因素例如遮挡、小目标等问题,提出一种基于特征增强与数据增强的城市街景实例分割算法DF-SOLO(data augmentation and feature en-hancement SOLO)。针对遮挡问题... 城市街景分割是智能交通领域中一项关键的技术,对于城市街景环境中的客观因素例如遮挡、小目标等问题,提出一种基于特征增强与数据增强的城市街景实例分割算法DF-SOLO(data augmentation and feature en-hancement SOLO)。针对遮挡问题,通过非对称自编-解码器架构对城市街景图像进行数据增强,与传统方法相比处理后的图像更贴近真实的源数据分布。针对城市街景中的小目标分割问题,引入特征加权和特征融合的思想,特征加权模块在特征处理过程中能够根据特征的重要程度赋予不同的权值,提高对重要特征的利用率;特征融合模块从更细粒度的角度进行多尺度特征融合以解决尺度敏感问题,提高语义特征的描述性。通过在Cityscapes数据集上的实验表明,提出的实例分割算法在保证实时性的同时相较于单阶段SOLO算法和两阶段Mask R-CNN算法的mAP值上分别提升2.1%和2%,改善了对小目标和遮挡目标的分割效果。 展开更多
关键词 实例分割 SOLO算法 特征提取 数据增强 城市街景
下载PDF
结合数据增强及组合算法的短期光伏功率预测
2
作者 毛嘉铭 刘光宇 罗凯元 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期133-141,共9页
针对光伏发电数据完备性低、预测精度低的问题,提出结合数据增强及组合算法的短期光伏功率预测模型。首先,利用K-means++聚类算法对光伏数据进行天气分型;其次,利用条件生成对抗网络对光伏数据的分布规律进行学习,生成高质量样本;然后,... 针对光伏发电数据完备性低、预测精度低的问题,提出结合数据增强及组合算法的短期光伏功率预测模型。首先,利用K-means++聚类算法对光伏数据进行天气分型;其次,利用条件生成对抗网络对光伏数据的分布规律进行学习,生成高质量样本;然后,优化变分模态分解的分解数和惩罚因子,进一步降低子序列的模糊熵值;最后,通过正余弦算法对深度极限学习机的输入权重和偏置进行优化,分别对各子序列进行建立预测模型。实验结果表明,所提模型具有一定的优越性。 展开更多
关键词 光伏功率预测 数据增强 变分模态分解 深度极限学习机 正余弦算法
下载PDF
基于类别图增强算法的融合异构数据会话推荐分析
3
作者 李彩霞 《电子产品世界》 2023年第8期69-71,共3页
为了提高融合异构数据会话推荐效率,设计了一种通过类别图来实现增强效果的推荐算法。在融合层内融合物品与类别表征结果,确保物品表征中包含类别数据;根据注意力机制建立全局表征,再通过局部表征建立最终表示;通过预测层计算各候选对... 为了提高融合异构数据会话推荐效率,设计了一种通过类别图来实现增强效果的推荐算法。在融合层内融合物品与类别表征结果,确保物品表征中包含类别数据;根据注意力机制建立全局表征,再通过局部表征建立最终表示;通过预测层计算各候选对象推荐参数。研究结果表明:设计得到的CaSe4SR模型对各类数据集都表现出了最优推荐性能,CaSe4SR-W模型表现出了比Concat与CaSe4SR两种模型更差的性能,推断类别信息需结合物品信息共同建模,需根据物品参数才可以发挥信息补充功能。 展开更多
关键词 会话推荐 类别图增强算法 异构数据 全局表征
下载PDF
基于GAN和特征选择技术的入侵检测数据增强
4
作者 崔子才 钟伯成 赵欣阳 《智能计算机与应用》 2024年第3期174-180,共7页
为了解决传统GAN模型的缺陷,更好地扩展网络入侵数据和缓解数据高维性问题,本文提出了GAN-CS数据增强模型。对数据进行预处理后,使用改进后的WGAN-GP对攻击数据进行增强,生成额外的攻击样本后,使用卡方检验方法选择最能够代表数据集的特... 为了解决传统GAN模型的缺陷,更好地扩展网络入侵数据和缓解数据高维性问题,本文提出了GAN-CS数据增强模型。对数据进行预处理后,使用改进后的WGAN-GP对攻击数据进行增强,生成额外的攻击样本后,使用卡方检验方法选择最能够代表数据集的特征,生成用于分类器训练平衡后的数据集,最后使用多种不同的分类器对数据集进行分类,评估模型效果。本文基于UNSW-NB15分别进行了数据增强数据量选择实验、模型可行性实验、模型优越性比较等3个维度的实验。结果表明,在多个分类器下,本文提出的模型均表现出比同类模型更好的效果,可以有效提高入侵检测模型的检测性能。 展开更多
关键词 入侵检测 数据增强 WGAN-GP算法 UNSW-NB15数据
下载PDF
面向工业入侵检测的数据增强和检测模型的研究
5
作者 宗学军 王震 +1 位作者 何戡 连莲 《计算机应用与软件》 北大核心 2024年第9期370-376,共7页
由于采集到的工业互联网流量数据存在正常流量和攻击流量的样本数目不平衡、样本特征复杂的问题,提出一种使用梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)并结合卷积神经网络(CNN)与门控循环单元(GRU)的深度学习入侵检测方法。使用WGAN... 由于采集到的工业互联网流量数据存在正常流量和攻击流量的样本数目不平衡、样本特征复杂的问题,提出一种使用梯度惩罚的Wasserstein生成对抗网络(WGAN-GP)并结合卷积神经网络(CNN)与门控循环单元(GRU)的深度学习入侵检测方法。使用WGAN-GP数据增强并使用CNN与GRU混合模型进行深层特征提取解决上述问题。使用加拿大网络安全研究所公布的CICIDS2017数据集对模型进行实验,结果表明,对比不同机器学习算法,采用该方法的入侵检测结果准确率更高。利用密西西比州立大学天然气管道数据集对模型进行验证,结果证明了该模型在工业网络环境下的可行性和有效性。 展开更多
关键词 生成对抗网络 数据增强算法 卷积神经网络 门控循环单元 工业入侵检测
下载PDF
基于聚类算法的不平衡数据分类
6
作者 林肖莹 胡敏杰 张勇 《中国信息界》 2024年第5期164-166,共3页
引言现有的不平衡数据分类问题通常采用重采样和重加权等类重平衡策略,使决策边界倾向于准确分类尾部类的数据。但在类重平衡策略实施后,每个类别的类内分布变得更加松散,损害了深层特征的代表能力。因此,本文提出采用多粒度数据增强策... 引言现有的不平衡数据分类问题通常采用重采样和重加权等类重平衡策略,使决策边界倾向于准确分类尾部类的数据。但在类重平衡策略实施后,每个类别的类内分布变得更加松散,损害了深层特征的代表能力。因此,本文提出采用多粒度数据增强策略生成的新平衡样本集重新进行表征学习和分类。 展开更多
关键词 不平衡数据分类 聚类算法 平衡策略 多粒度 重采样 类内分布 数据增强 策略生成
下载PDF
基于改进生成对抗网络的图像数据增强方法 被引量:5
7
作者 詹燕 胡蝶 +3 位作者 汤洪涛 鲁建厦 谭健 刘长睿 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期1998-2010,共13页
为了提高机器学习模型的精确度,提出基于数据分布拟合、生成式对抗神经网络和图像超分辨率重建的图像数据增强方法.该方法将最大似然估计和采样算法生成的符合原始数据分布的二维噪声用于对抗训练,克服了在生成模型中传统图像噪声输入... 为了提高机器学习模型的精确度,提出基于数据分布拟合、生成式对抗神经网络和图像超分辨率重建的图像数据增强方法.该方法将最大似然估计和采样算法生成的符合原始数据分布的二维噪声用于对抗训练,克服了在生成模型中传统图像噪声输入随意的问题;采用逐层训练方式生成高分辨率图像,改进高分辨率图像映射困难、参数冗余的缺点.以轴承滚子表面灰度图像数据增强为例,验证所提方法的有效性.研究结果表明,所提方法生成的图像质量更优,相比传统方法生成的图像峰值信噪比提高13.07%,结构相似性提高32.40%,弗雷歇初始距离降低37.58%,且数据增强后的模型平均精确度提升7.89%. 展开更多
关键词 图像数据增强 分布拟合 采样算法 生成式对抗网络 图像超分辨率重建
下载PDF
基于改进Mosaic数据增强和特征融合的Logo检测 被引量:15
8
作者 陈翠琴 范亚臣 王林 《计算机测量与控制》 2022年第10期188-194,201,共8页
近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4... 近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4张原始图片合成的图像一起作为YOLOv4模型的训练输入,并确定3种输入形式的最优比例,同时使用一种新的训练策略,改进的Mosaic数据增强方法丰富了Logo对象的尺度和背景,使模型更好地学习全局和局部特征;在路径整合网络(PANet)的基础上引入跨层连接、重复堆叠、直接连接和加权特征融合等操作,改进的PANet扩大了模型感受野,增强了模型的多尺度特征表达能力;实验结果表明,提出的MP-YOLOv4算法在减小21.7%模型大小的同时,IoU(intersection of union)等于0.5时的平均精度上达到了67.4%,较YOLOv4提高了2.4%,同时在多尺度目标上的检测性能得到了改善。 展开更多
关键词 Logo检测 YOLOv4 mosaic数据增强 特征融合 多尺度
下载PDF
基于改进YOLOv8算法的草莓采摘目标检测算法
9
作者 赵艳芹 崔翊超 《高师理科学刊》 2024年第10期46-51,共6页
针对农业领域中草莓采摘机器人在复杂环境下识别草莓果实准确率不高的问题,提出了一种基于改进后的YOLOv8算法的解决方案,该方法能够实现对草莓果实的精确、快速识别.首先,使用Mosaic数据增强算法进行目标检测数据预处理,该方法显著提... 针对农业领域中草莓采摘机器人在复杂环境下识别草莓果实准确率不高的问题,提出了一种基于改进后的YOLOv8算法的解决方案,该方法能够实现对草莓果实的精确、快速识别.首先,使用Mosaic数据增强算法进行目标检测数据预处理,该方法显著提高了模型的泛化能力,并帮助模型在复杂背景中更好地识别草莓;其次,引入了通道优先卷积注意力机制,该机制通过重点关注图像中的信息丰富通道,提高了对小目标草莓的检测能力,显著提升了特征提取的效率,使得模型能够更加集中地学习和提取与草莓识别相关的特征,从而提高了小目标检测的精度.通过一系列的实验验证,改进后的YOLOv8算法在草莓采摘目标检测中的表现显著优于原始YOLOv8算法,其平均精度均值达到89.35%,相较于原YOLOv8算法,平均精度均值提升了5.83%.综上所述,所提出方法在识别草莓果实时具有显著的优势,特别是在处理小目标和复杂背景方面.改进后的YOLOv8-ECPCA网络模型达到了可在草莓采摘机器人中应用的水平,可为采摘机器人在实际农业环境中的实时小目标检测提供强有力的支持. 展开更多
关键词 采摘机器人 YOLOv8算法 注意力机制 mosaic数据增强算法
下载PDF
小波域在无线局域网络信号增强中的应用
10
作者 张沛朋 《通化师范学院学报》 2024年第8期56-62,共7页
为提升无线局域网络信号增强中的去噪效果,应用小波域思想,设计一种无线局域网络信号增强算法.针对无线局域网络,收集无线局域网络原始功率谱数据,通过功率谱拟合因子提取信号特征,识别网络信号.对于识别的无线局域网络信号,通过过零率... 为提升无线局域网络信号增强中的去噪效果,应用小波域思想,设计一种无线局域网络信号增强算法.针对无线局域网络,收集无线局域网络原始功率谱数据,通过功率谱拟合因子提取信号特征,识别网络信号.对于识别的无线局域网络信号,通过过零率和短时功率提取该信号.基于小波域对无线局域网络信号实施去噪处理,分为二维小波变换、二进剖分、信号重构三个步骤.通过贝叶斯方法,在实施稀疏字典训练的同时,实现无线局域网络信号的增强处理,在训练中结合K-SVD算法,将信号增强过程和稀疏字典学习过程进行迭代和融合.将MATLAB R2019a作为测试设计算法的实验平台,利用计算机开展算法性能测试.测试结果表明:设计算法的无线局域网络信号增强性能良好,同时信号去噪性能较强,说明算法满足设计需求,在完善细节后可以投入实际应用. 展开更多
关键词 小波域 无线局域网络 信号原始功率谱数据 信号增强算法 神经网络分类器 二维小波变换
下载PDF
增强的K-均值算法在城市能源计量数据平台的应用研究
11
作者 郑细端 《计算机与数字工程》 2016年第4期748-751,共4页
能源的节能降耗一直是个热点问题,论文根据Oracle数据挖掘流程,运用Oracle Data Miner,阐述了如何将ODM增强的K-均值聚类算法应用于城市能源计量数据平台。选定某公司的煤耗数据为研究对象,对增强的K-均值聚类算法结果进行分析,为行业... 能源的节能降耗一直是个热点问题,论文根据Oracle数据挖掘流程,运用Oracle Data Miner,阐述了如何将ODM增强的K-均值聚类算法应用于城市能源计量数据平台。选定某公司的煤耗数据为研究对象,对增强的K-均值聚类算法结果进行分析,为行业发展提供科学决策。 展开更多
关键词 Oracle数据挖掘 增强的K-均值算法 ORACLE DATA MINER 数据挖掘
下载PDF
基于数据增强的烧结矿转鼓强度预测研究 被引量:1
12
作者 李泽政 刘卫星 +2 位作者 李飞 李一帆 杨爱民 《烧结球团》 北大核心 2023年第6期62-68,共7页
烧结矿转鼓强度是烧结过程中反映烧结矿质量的重要指标之一,其精确预测可以提高生产过程的控制精度和效率,降低生产成本和资源浪费。但在实际生产中,烧结矿转鼓强度预测存在一些困难,比如数据量有限、数据质量不佳等问题。因此,为了提... 烧结矿转鼓强度是烧结过程中反映烧结矿质量的重要指标之一,其精确预测可以提高生产过程的控制精度和效率,降低生产成本和资源浪费。但在实际生产中,烧结矿转鼓强度预测存在一些困难,比如数据量有限、数据质量不佳等问题。因此,为了提高预测精度,首先采用生成对抗网络(GAN)对原始数据集进行扩增,以解决数据量有限的问题;然后采用麻雀搜索算法(SSA)优化的回声状态网络(ESN)构建预测模型。相比于传统的神经网络,ESN具有更好的稳定性和泛化能力,并且能够快速训练和适应新数据。通过试验验证了该模型的预测精度和效率,并与其他预测算法进行了比较。结果表明,采用扩增后的数据集和ESN模型可以显著提高预测精度,平均绝对百分比误差由1.41%缩小至1.06%。 展开更多
关键词 烧结 转鼓强度 数据增强 回声状态网络 优化算法
下载PDF
基于YOLOv5算法的多尺度小目标船舶识别方法
13
作者 杨俊秀 王荣杰 +3 位作者 林安辉 王亦春 曾广淼 蒋德松 《集美大学学报(自然科学版)》 CAS 2024年第4期344-357,共14页
为提高海面多尺度小目标船舶的识别性能,提出一种数据集划分方法,并在YOLOv5算法中改进数据增强方法,融合注意力机制,改进损失函数。实验结果表明,该方法能更好地识别海面上的多尺度小目标船舶,平均精度(mAP)、精确率(P)、召回率(R)分别... 为提高海面多尺度小目标船舶的识别性能,提出一种数据集划分方法,并在YOLOv5算法中改进数据增强方法,融合注意力机制,改进损失函数。实验结果表明,该方法能更好地识别海面上的多尺度小目标船舶,平均精度(mAP)、精确率(P)、召回率(R)分别为99.1%,98.5%,97.5%,识别性能比经典深度学习算法和近几年的方法都高。 展开更多
关键词 船舶 多尺度小目标 图像识别 数据增强 YOLOv5算法
下载PDF
基于代价敏感思想和自适应增强集成的SVM多分类算法
14
作者 何旭 席佩瑶 辛云宏 《微型电脑应用》 2023年第9期1-3,共3页
针对数据识别分类在传统的支持向量机(SVM)个体分类器上正确识别率不理想的问题,提出一种基于代价敏感思想(cost-sensitive)和自适应增强(AdaBoost)的SVM集成数据分类算法(CAB-SVM)。在自适应增强算法每次迭代训练SVM弱分类器之前,根据... 针对数据识别分类在传统的支持向量机(SVM)个体分类器上正确识别率不理想的问题,提出一种基于代价敏感思想(cost-sensitive)和自适应增强(AdaBoost)的SVM集成数据分类算法(CAB-SVM)。在自适应增强算法每次迭代训练SVM弱分类器之前,根据样本总数设置初始样本权值,并抽取样本组成临时训练集训练SVM弱分类器。其中在权重迭代更新阶段,赋予被分错样本更高的误分代价,使得被分错样本权重增加更快,有效地减少了算法迭代次数。同时,算法迭代过程极大地优化了个体分类器的识别鲁棒性能,使得提出的CAB-SVM算法获得了更优越的数据分类性能。利用UCI数据样本集的实验结果表明CAB-SVM分类算法的正确识别率高于SVM和SVME算法。 展开更多
关键词 支持向量机 自适应增强算法 代价敏感思想 数据识别分类
下载PDF
恶劣环境下图像算法数据增强方法 被引量:6
15
作者 刘洪宇 杨林 姜蕾 《计算机工程与设计》 北大核心 2021年第9期2545-2551,共7页
为解决恶劣环境下数据采集难度较大、数据匮乏导致模型性能受限的问题,提出一种基于风格迁移的数据增强方法,用于增加恶劣环境下的样本数量,提升模型在恶劣环境下的鲁棒性。建立包含22500张图片的数据集,使用卷积神经网络进行图片去重,... 为解决恶劣环境下数据采集难度较大、数据匮乏导致模型性能受限的问题,提出一种基于风格迁移的数据增强方法,用于增加恶劣环境下的样本数量,提升模型在恶劣环境下的鲁棒性。建立包含22500张图片的数据集,使用卷积神经网络进行图片去重,进行手工标注,用于进行分类模型的训练。设计正常环境和恶劣环境对比实验,验证提出的数据增强方法效果,实验结果表明,该方法可以有效提升分类模型在恶劣环境下的鲁棒性。 展开更多
关键词 恶劣环境 人工智能 图像算法 数据增强 风格迁移
下载PDF
融入结构先验知识的隐私信息抽取算法
16
作者 赵玉媛 王斌 +2 位作者 张泽丹 李青山 胡建斌 《信息安全研究》 CSCD 北大核心 2024年第2期139-147,共9页
随着数据脱敏技术的持续进步,精确识别隐私数据已成为关键挑战.目前,隐私信息抽取算法主要基于传统自然语言处理技术,如双向循环神经网络和基于注意力机制的预训练语言模型(如BERT).这些模型利用其强大的上下文特征表示能力,克服了传统... 随着数据脱敏技术的持续进步,精确识别隐私数据已成为关键挑战.目前,隐私信息抽取算法主要基于传统自然语言处理技术,如双向循环神经网络和基于注意力机制的预训练语言模型(如BERT).这些模型利用其强大的上下文特征表示能力,克服了传统方法在多义词表示方面的限制.然而,它们在精确判断实体边界方面仍有改进空间.提出了一种新颖的隐私信息抽取算法,该算法融合结构先验知识,通过一种隐私数据结构知识增强机制,提高模型对句子语义结构的理解,从而提高了隐私信息边界判断的准确性.此外,还在多个公开数据集上对模型进行评估,详细的实验结果展示了其有效性. 展开更多
关键词 结构先验知识 结构增强机制 隐私信息抽取算法 实体边界判断 数据脱敏 自然语言处理
下载PDF
基于多尺度线性全局注意力的运动员检测算法
17
作者 林芷薇 杨祖元 +1 位作者 王斯秋 杨超 《计算机工程》 CAS CSCD 北大核心 2024年第7期352-359,共8页
运动员在比赛过程中的快速移动且频繁遮挡,使得对视频中运动员检测容易出现漏检、多检、检测精度下降等问题。现有的主流方法对于移动和遮挡情况下的运动员检测表现不佳。当运动员受到遮挡后,检测目标框的尺度变化增大。引入cutout作为... 运动员在比赛过程中的快速移动且频繁遮挡,使得对视频中运动员检测容易出现漏检、多检、检测精度下降等问题。现有的主流方法对于移动和遮挡情况下的运动员检测表现不佳。当运动员受到遮挡后,检测目标框的尺度变化增大。引入cutout作为数据增强的方法来模拟遮挡情况,提出基于多尺度线性全局注意力Efficient ViT模块的运动员检测算法。使用线性全局注意力模块减少计算量,并辅以卷积模块来增强其局部的特征提取能力,通过轻量级小卷积聚合不同注意力头部的token获得多尺度信息,增强其全局特征提取能力。针对损失函数部分,选择EIo U作为边界框损失,加入检测框与目标框的宽高距离,使得检测框和真实目标框在尺度上更为贴近。在Sports MOT数据集中4个公开的篮球比赛视频数据集上的实验结果表明,该算法取得了98.0%准确率和98.2%的平均精度均值,相较于YOLOv5算法,其精度提升了4%,高置信度的平均精度均值提升了8.7%。 展开更多
关键词 YOLOv5算法 运动员检测 多尺度线性全局注意力 数据增强 边界框损失
下载PDF
GCN网络推荐算法中负采样方法研究
18
作者 邓超文 闭应洲 +1 位作者 刘鹏辉 蒋鑫鑫 《南宁师范大学学报(自然科学版)》 2024年第2期70-75,共6页
图卷积网络(GCN)由于其出色的图数据处理能力,在推荐系统中得到了广泛的应用,但现有的GCN推荐系统却忽略了对负采样策略的支持。聚焦研究图卷积网络推荐系统中更有效的负采样方法,提出一种生成难负样本(hard negative sample)的负采样... 图卷积网络(GCN)由于其出色的图数据处理能力,在推荐系统中得到了广泛的应用,但现有的GCN推荐系统却忽略了对负采样策略的支持。聚焦研究图卷积网络推荐系统中更有效的负采样方法,提出一种生成难负样本(hard negative sample)的负采样算法。通过引入流行度的概念,控制正负样本的嵌入表示的融合过程,以生成强负样本候选集,再通过层组合择优策略在难负样本候选集中选出最优难负样本再与正样本组成样本对,通过贝叶斯个性化排序(bayesian personalizedranking,BPR)函数进行优化训练。实验结果表明,所提出的负采样算法有效。 展开更多
关键词 推荐算法 图卷积网络 mixup数据增强 难负样本
下载PDF
Landsat 7 ETM+全色与多光谱数据融合算法的比较 被引量:20
19
作者 杨丽萍 夏敦胜 陈发虎 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期7-11,17,共6页
以Landsat 7 ETM+数据为例,采用Brovey变换、HSV变换、PCA变换以及Gram-Schmidt光谱锐化算法对比研究了同一传感器全色和多光谱数据的融合问题.由定性和定量分析认为:空间分辨率的增强和光谱特性的改善是相互矛盾的,针对Landsat 7 ETM+... 以Landsat 7 ETM+数据为例,采用Brovey变换、HSV变换、PCA变换以及Gram-Schmidt光谱锐化算法对比研究了同一传感器全色和多光谱数据的融合问题.由定性和定量分析认为:空间分辨率的增强和光谱特性的改善是相互矛盾的,针对Landsat 7 ETM+本身的融合而言,综合考虑保光谱特性、信息量和清晰度,最佳的融合算法是PCA变换,而Gram-Schmidt光谱锐化法要优于Brovey变换和HSV变换.该研究为充分利用Landsat 7 ETM+的全色高分辨率和多光谱特性,进一步挖掘Landsat 7 ETM+的数据潜力奠定了基础. 展开更多
关键词 增强型主题成像传感器 数据融合算法 全色与多光谱
下载PDF
基于数据融合算法的灌区蒸散发空间降尺度研究 被引量:7
20
作者 白亮亮 蔡甲冰 +3 位作者 刘钰 陈鹤 张宝忠 黄凌旭 《农业机械学报》 EI CAS CSCD 北大核心 2017年第4期215-223,共9页
采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结... 采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结果进行评价。在融合蒸散发基础上,结合解放闸灌域2000—2015年间种植结构信息,提取不同作物各自生育期和非生育期内年际蒸散发量,并分析了大型灌区节水改造以来,作物蒸散发占比的年际变化。研究结果表明:融合蒸散发与水量平衡蒸散发变化过程较吻合,小麦耗水峰值出现在6月中下旬—7月初,玉米和向日葵峰值出现在7月份。在相关性分析中,玉米、小麦和向日葵的决定系数R2分别达到了0.85、0.79和0.82;生育期内玉米(5—10月份)、小麦(4—7月份)和向日葵(6—10月份)的均方根误差均不高于0.70 mm/d;平均绝对误差均不高于0.75 mm/d;相对误差均不高于16%。在农田蒸散发总量验证中,融合蒸散发与水量平衡蒸散发相关性较好,两者决定系数达到了0.64。基于ESTARFM融合算法生成的高分辨率蒸散发(ET)结果可靠,具有较好的融合精度。融合结果与Landsat蒸散发的空间分布和差异性一致,7月23日、8月24日和9月1日相关系数分别达到0.85、0.81和0.77;差值均值分别为0.24 mm、0.19 mm和0.22 mm;标准偏差分别为0.81 mm、0.72 mm和0.61 mm。ESTARFM融合算法在农田蒸散发空间降尺度得到较好的应用,可有效区分不同作物蒸散发之间的差异。不同作物在生育期和非生育期内耗水量差别较大;生育期内套种(4—10月份)耗水量最大,达到637 mm,玉米(5—10月份)和向日葵(6—10月份)次之,分别为598 mm和502 mm,小麦(4—7月份)最低为412 mm;非生育期内,小麦(8—10月份)耗水量最大,年均达到214 mm,玉米(4月份)和向日葵(4—5月份)分别为42 mm和128 mm。不同作物多年平均耗水量(4—10月份)差异较小,其年际耗水总量主要随作物种植面积的变化而变化。 展开更多
关键词 遥感 数据融合 蒸散发 地表能量平衡模型 增强时空自适应融合算法 河套灌区
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部