The spatial occurrence of iron in kaolinite of coal measures west of Beijing was studied by using the Mossbauer spectroscopy technique and a step-by-step method of fitting. The results show that there are three kinds ...The spatial occurrence of iron in kaolinite of coal measures west of Beijing was studied by using the Mossbauer spectroscopy technique and a step-by-step method of fitting. The results show that there are three kinds of spatial occurrence in kaolinites: tetra-coordination Fe(3+) in Si-O tetrahedrons, sexa-coordination Fe(3+) in A1--O octahedrons and sexa-coordination Fe(2+) in A1-O octahedrons, respectively occupying 51.72 %, 37.25 % and 11.03 %, Neither foreign matter of magnetic Fe mineral nor superparamagnetic goethite exists in kaolin concentrates. Fe in kaolin concentrates cannot be removed by conventional methods, which is significant for both theoretical research on kaolinite minerology and practical use of the kaolinites of coal measures west of Beijing.The research also illustrates that the Mossbauer spectroscopy is an effective method in studying the micro-superfine Fe in kaolin.展开更多
An Fe-based nanocrystalline alloy powder is important for application in microwave absorption,and the particle size has a critical impact on the electromagnetic microwave parameters.Therefore,it is necessary to study ...An Fe-based nanocrystalline alloy powder is important for application in microwave absorption,and the particle size has a critical impact on the electromagnetic microwave parameters.Therefore,it is necessary to study further the effects of the particle size on such parameters and improve the microwave absorption performance of Febased nanocrystalline powers.In this study,Fe-B-P particles were prepared through a synthetic approach consisting of an aqueous chemical reduction and a ball milling treatment.We investigated the effects of ball milling on the microstructure and electromagnetic properties of Fe-B-P particles.The experimental results indicate that the Fe-B-P particles synthesized through an aqueous chemical reduction are amorphous spheres.Fe-B-P particles with an original particle size of 200-1200 nm can be milled into an irregular shape with the size reduced to\500 nm after 0.5 h of ball milling,and subsequently,the particles become smaller with increases in the milling time,with traces of Fe2O3 generated on the particle surface.The results of the Mo¨ssbauer spectra show that a portion of the small particles demonstrate a superparamagnetic property.The volume proportions of the superparamagnetic component increase from 13.1 to 15.8%as the treatment time increases.We measured the permittivity and permeability spectra of Fe-B-P particles within the frequency range of 2-18 GHz.The reflection loss(RL)is-10 dB for an absorber thickness of 1.7-5.0 mm.The RL is-20 dB for an absorber thickness of 1.9-2.7 mm.The microwave absorption properties of samples with the same thickness are improved with an increase in the treatment time and are shifted to a higher frequency,which will broaden the bandwidth of the absorption as well.展开更多
YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement...YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement on superconductivity of theHigh To materials.展开更多
Mossbauer spectroscopy was established as an analytical method 50 years ago and it is still of current interest in many disciplines as mineralogy, environmental science, archeology and biology. Areas of research where...Mossbauer spectroscopy was established as an analytical method 50 years ago and it is still of current interest in many disciplines as mineralogy, environmental science, archeology and biology. Areas of research where Mossbauer spectroscopy is contributing are metals and alloys, magnetic materials, chemical compounds and oxidation states, nanoparticles and many others. Different types of amorphous and nanocrystalline materials (e.g. finemet, nanoperm and hitperm) can be analyzed under different external influence like neutron irradiation or external magnetic field. Mineralogical samples as potassium white micas in sheared basement cover rocks from the Central Western Carpathians and meteorites can be also effectively investigated using MOssbauer spectroscopy. Phase analysis of meteorites can be helpful in their classification and moreover, particular magnetic and non-magnetic components can be analyzed in details. At present, the Mossbauer spectroscopy is also used to analyze environmental materials like zeolites, volcanic tephra and compounds containing ferrate (Fe6+).展开更多
Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi ...Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.展开更多
Soil samples taken from Xilamuren Grassland,Resonant Sand Bay,Inner Mongolia,and Yichang,western Hubei Province were investigated by Mssbauer spectroscopy at room temperature and 20 K.This was supplemented with phase ...Soil samples taken from Xilamuren Grassland,Resonant Sand Bay,Inner Mongolia,and Yichang,western Hubei Province were investigated by Mssbauer spectroscopy at room temperature and 20 K.This was supplemented with phase identification and elemental analysis to obtain information about the composition and structure types of Fe-containing compounds.The samples collected from both Xilamuren Grassland and Resonant Sand Bay,Inner Mongolia were found to have small amount of iron 1%-2%.The main phases were determined as silica,albite,and microcline.Two or three dominant doublets were observed in the Mssbauer spectra of these samples,respectively and identified as corresponding to the valence states of Fe2+and Fe3+.A sextet observed in all the spectra is attributed to the hematite phase.Low temperature Mssbauer measurements have revealed Morin transition.展开更多
Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the p...Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the prepared samples are examined by different methods such as x-ray diffraction(XRD), Mssbauer spectroscopy, macroscopic magnetization measurements, and thermal measurements. The XRD measurements show that all the samples reveal the presence of a single garnet phase with a BCC structure. Room temperature Mssbauer spectra indicate that iron ions occupy three magnetic sites, i.e., two octahedral sites and one tetrahedral site. The saturation magnetization and the initial magnetic susceptibility decrease with the increase of Dy^3+ substitution. The Curie temperature obtained from the thermal measurements seems to be independent of Dy^3+ substitution.展开更多
Mössbauer spectroscopy has been used widely to characterize the ferric(Fe^(3+))and ferrous(Fe^(2+))proportions and coordination of solid materials.To obtain these accurately,the recoilless fraction is indispensib...Mössbauer spectroscopy has been used widely to characterize the ferric(Fe^(3+))and ferrous(Fe^(2+))proportions and coordination of solid materials.To obtain these accurately,the recoilless fraction is indispensible.The recoilless fractions(f)of iron-bearing minerals,including oxides,oxyhydroxides,silicates,carbonates,phosphates and dichalcogenides,and silicate glasses were evaluated from the temperature dependence of their center shifts or absorption area with the Debye model approximation.Generally,the resolved Debye temperature(θ_(D))of ferric iron in minerals,except dichalcogenides,through their center shifts ranging from 400 to 550 K,is significantly larger than ferrous iron ranging from 300 to 400 K,which is consistent with the conclusion from previous work.The resolved f(Fe^(3+))RT with the center shift model(CSM)ranges from 0.825 to 0.925,which is larger than that obtained for f(Fe^(2+))RT,which ranges from 0.675 to 0.750.Meanwhile,the θ_(D) and f resolved from temperature-dependence of absorption are generally lower than from center shifts,especially for ferric iron.The significant difference between f(Fe^(3+))and f(Fe^(2+))indicates the necessity of recoilless fraction correction on the Fe^(3+)/(Fe^(3+)+Fe^(2+))resolved from Mössbauer spectra.展开更多
The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content ...The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content x. The effective magnetic moment of Fe atoms in the film is μFe=1.30μB and independent of x within the investigated composition range. The magnetic ordering temperatures Tc deduced from Mossbauer measurements are consistent with those from magnetic measurements under the same conditions (H&rarr0).展开更多
Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the...Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, t55Gd, and 237Np Mtissbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds. In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3 · 2H2O (pta = 1,1,1 -trifluoro-5,5-dimethy 1-2,4-hexanedione) and Gd(bfa)3 · 2H2O (bfa = 1, 1, 1 -trifluoro-4-phenyl-2-4-butanedione) were reported. Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3 · 2H2O crystallizes in the P 2 1/n (#14) monoclinic space group and its lattice parameters are a = 1.4141(6) nm, b = 1.0708(3) nm, c =2.2344(4) nm, β =952.4(2)°, and Gd(bfa)3· 2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a = 1.322 (1) nm, b = 2.295 (1) nm, c = 1. 0786(8) nm. In the meantime, the authors had finished a systematic investigation on the ^155Gd Mossbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen. A tendency for the 6 value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed. This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the lisands donating electrons to 6s, 5d, and 4f orbitals of Gd.展开更多
The reduction process of Eu2O3 on TiO2 and other supports is investigated in detail by Mossbauer spectroscopy. The reducibility of Eu2O3 is greatly enhanced when it is supported on a surface of support. This is due to...The reduction process of Eu2O3 on TiO2 and other supports is investigated in detail by Mossbauer spectroscopy. The reducibility of Eu2O3 is greatly enhanced when it is supported on a surface of support. This is due to the solid-solid interaction between the oxide and the support.展开更多
Magnetic anisotropies of the amorphous alloy Fe_(71)Ni_(10)B_(13)Si_(14)C_2 annealed in magnetic field have been studied using Mossbauer spectroscopy and X-ray diffraction.It is shown that the distribution of moments ...Magnetic anisotropies of the amorphous alloy Fe_(71)Ni_(10)B_(13)Si_(14)C_2 annealed in magnetic field have been studied using Mossbauer spectroscopy and X-ray diffraction.It is shown that the distribution of moments in the annealed sample are determined by both stress-produced and thermomagnetic treatment-induced magnetic anisotropies.展开更多
The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V...The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V)(3)Si dispersive particles existing in Al-Fe-V-Si alloy is suppressed by:the addition of misch metal, A new Al-Fe-V-Si-Mm amorphous alloy is formed when the concentration of misch metal is up to 6 at%, in the meantime, the corresponding structural analysis is made using Voigt-based fitting method.展开更多
The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. ...The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.展开更多
The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on t...The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.展开更多
The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization ...To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.展开更多
Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at ...Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at 1200℃ exposed in air and steam environments for 400 h. The basic aim was to identify and compare the iron oxides qualitatively and quantitatively, formed during the oxidation of these alloys in two environments. The behaviour of alloy UBHA-25L in high temperature oxidation in both environments indicates that it has good oxidation resistance especially in steam, whereas Sanicro-28 has excellent corrosion resistance in steam environment. In air oxidation of Inconel-690 no iron oxide, with established Mossbauer parameters, was detected.展开更多
Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray ...Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3 μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous YaFe4AlO12 was produced after heating the respective complex at 1000 ℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.展开更多
Physical and chemical properties of the magnetic nanoparticles coated with oleate have been investigated by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Mossbauer spectroscopy, su...Physical and chemical properties of the magnetic nanoparticles coated with oleate have been investigated by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, infrared spectra (IR) and the contact angle device. The results show that doped Al ions in Fe3O4 nanoparticles are located on the octahedral sites of the spinel structure. Oleate is coated on the magnetic nanoparticles with two layers by chemical absorbing, the outer layer can be washed away. The wetting of the surface of magnetic nanoparticles coated with monolayer has been changed from hydrophilicity to hydrophobicity, and the nanoparticles can be dispersed very well in some organic solutions.展开更多
基金Project 3042013 supported by Natural Science Foundation of Beijing
文摘The spatial occurrence of iron in kaolinite of coal measures west of Beijing was studied by using the Mossbauer spectroscopy technique and a step-by-step method of fitting. The results show that there are three kinds of spatial occurrence in kaolinites: tetra-coordination Fe(3+) in Si-O tetrahedrons, sexa-coordination Fe(3+) in A1--O octahedrons and sexa-coordination Fe(2+) in A1-O octahedrons, respectively occupying 51.72 %, 37.25 % and 11.03 %, Neither foreign matter of magnetic Fe mineral nor superparamagnetic goethite exists in kaolin concentrates. Fe in kaolin concentrates cannot be removed by conventional methods, which is significant for both theoretical research on kaolinite minerology and practical use of the kaolinites of coal measures west of Beijing.The research also illustrates that the Mossbauer spectroscopy is an effective method in studying the micro-superfine Fe in kaolin.
基金supported by the National Natural Science Foundation of China (Nos. 51401049, U1704253)Natural Science Foundation of Zhejiang Province (No. LR18E010001)Key Research and Development Program of Zhejiang Province (No. 2019C01121)
文摘An Fe-based nanocrystalline alloy powder is important for application in microwave absorption,and the particle size has a critical impact on the electromagnetic microwave parameters.Therefore,it is necessary to study further the effects of the particle size on such parameters and improve the microwave absorption performance of Febased nanocrystalline powers.In this study,Fe-B-P particles were prepared through a synthetic approach consisting of an aqueous chemical reduction and a ball milling treatment.We investigated the effects of ball milling on the microstructure and electromagnetic properties of Fe-B-P particles.The experimental results indicate that the Fe-B-P particles synthesized through an aqueous chemical reduction are amorphous spheres.Fe-B-P particles with an original particle size of 200-1200 nm can be milled into an irregular shape with the size reduced to\500 nm after 0.5 h of ball milling,and subsequently,the particles become smaller with increases in the milling time,with traces of Fe2O3 generated on the particle surface.The results of the Mo¨ssbauer spectra show that a portion of the small particles demonstrate a superparamagnetic property.The volume proportions of the superparamagnetic component increase from 13.1 to 15.8%as the treatment time increases.We measured the permittivity and permeability spectra of Fe-B-P particles within the frequency range of 2-18 GHz.The reflection loss(RL)is-10 dB for an absorber thickness of 1.7-5.0 mm.The RL is-20 dB for an absorber thickness of 1.9-2.7 mm.The microwave absorption properties of samples with the same thickness are improved with an increase in the treatment time and are shifted to a higher frequency,which will broaden the bandwidth of the absorption as well.
文摘YBa2(Cu3-xFex)Oy (x is 0.001, 0.005, 0.01, 0.1 and 0.3 respectively), of whichCu is replaced with 57Fe are studied using M0ssbauer spectroscopy to understand thecrystal lattice property, the effects of the replacement on superconductivity of theHigh To materials.
文摘Mossbauer spectroscopy was established as an analytical method 50 years ago and it is still of current interest in many disciplines as mineralogy, environmental science, archeology and biology. Areas of research where Mossbauer spectroscopy is contributing are metals and alloys, magnetic materials, chemical compounds and oxidation states, nanoparticles and many others. Different types of amorphous and nanocrystalline materials (e.g. finemet, nanoperm and hitperm) can be analyzed under different external influence like neutron irradiation or external magnetic field. Mineralogical samples as potassium white micas in sheared basement cover rocks from the Central Western Carpathians and meteorites can be also effectively investigated using MOssbauer spectroscopy. Phase analysis of meteorites can be helpful in their classification and moreover, particular magnetic and non-magnetic components can be analyzed in details. At present, the Mossbauer spectroscopy is also used to analyze environmental materials like zeolites, volcanic tephra and compounds containing ferrate (Fe6+).
文摘Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.
基金Support by the National Natural Science Foundation of China(11350110206)the International Cooperation Program of Ministry of Science and Technology of China(2011DFR50580)
文摘Soil samples taken from Xilamuren Grassland,Resonant Sand Bay,Inner Mongolia,and Yichang,western Hubei Province were investigated by Mssbauer spectroscopy at room temperature and 20 K.This was supplemented with phase identification and elemental analysis to obtain information about the composition and structure types of Fe-containing compounds.The samples collected from both Xilamuren Grassland and Resonant Sand Bay,Inner Mongolia were found to have small amount of iron 1%-2%.The main phases were determined as silica,albite,and microcline.Two or three dominant doublets were observed in the Mssbauer spectra of these samples,respectively and identified as corresponding to the valence states of Fe2+and Fe3+.A sextet observed in all the spectra is attributed to the hematite phase.Low temperature Mssbauer measurements have revealed Morin transition.
基金Project supported by the Deanship of Research and Graduate Studies of Yarmouk University(Garnet No.33/2015)
文摘Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the prepared samples are examined by different methods such as x-ray diffraction(XRD), Mssbauer spectroscopy, macroscopic magnetization measurements, and thermal measurements. The XRD measurements show that all the samples reveal the presence of a single garnet phase with a BCC structure. Room temperature Mssbauer spectra indicate that iron ions occupy three magnetic sites, i.e., two octahedral sites and one tetrahedral site. The saturation magnetization and the initial magnetic susceptibility decrease with the increase of Dy^3+ substitution. The Curie temperature obtained from the thermal measurements seems to be independent of Dy^3+ substitution.
基金support from National Natural Science Foundation of China(41873067)Postdoctoral Science Foundation of China(2018M640160,2019T120120)。
文摘Mössbauer spectroscopy has been used widely to characterize the ferric(Fe^(3+))and ferrous(Fe^(2+))proportions and coordination of solid materials.To obtain these accurately,the recoilless fraction is indispensible.The recoilless fractions(f)of iron-bearing minerals,including oxides,oxyhydroxides,silicates,carbonates,phosphates and dichalcogenides,and silicate glasses were evaluated from the temperature dependence of their center shifts or absorption area with the Debye model approximation.Generally,the resolved Debye temperature(θ_(D))of ferric iron in minerals,except dichalcogenides,through their center shifts ranging from 400 to 550 K,is significantly larger than ferrous iron ranging from 300 to 400 K,which is consistent with the conclusion from previous work.The resolved f(Fe^(3+))RT with the center shift model(CSM)ranges from 0.825 to 0.925,which is larger than that obtained for f(Fe^(2+))RT,which ranges from 0.675 to 0.750.Meanwhile,the θ_(D) and f resolved from temperature-dependence of absorption are generally lower than from center shifts,especially for ferric iron.The significant difference between f(Fe^(3+))and f(Fe^(2+))indicates the necessity of recoilless fraction correction on the Fe^(3+)/(Fe^(3+)+Fe^(2+))resolved from Mössbauer spectra.
文摘The 57Fe Mossbauer measurements for amorphous NdxFe1-x films (x=0.20-0.40), prepared by flash evaporation with substrate temperature 77K, show a broad hyperfine distribution and it is nearly independent of Nd content x. The effective magnetic moment of Fe atoms in the film is μFe=1.30μB and independent of x within the investigated composition range. The magnetic ordering temperatures Tc deduced from Mossbauer measurements are consistent with those from magnetic measurements under the same conditions (H&rarr0).
基金Project supported by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan andin Part by the Inter-University Joint Research Program for the Common Use of JAERI (Japan Atomic Energy Research Institute)Facilities
文摘Some functional lanthanide metal complexes, such as acetylacetonato complexes, ethylenediaminetetraacetato complexes, were successfully applied for diagnostic technique. The authors are interested in investigating the structure and bonding in lanthanide and actinide metal complexes using 166Er, t55Gd, and 237Np Mtissbauer spectroscopies in connection with single-crystal and/or powder X-ray diffraction, making clear the differences on their structures as well as the differences in the participation of 4f and 5f orbitals in the chemical bonds. In this article, the crystal structures of two novel Gd(Ⅲ) acetylacetonato complexes, Gd(pta)3 · 2H2O (pta = 1,1,1 -trifluoro-5,5-dimethy 1-2,4-hexanedione) and Gd(bfa)3 · 2H2O (bfa = 1, 1, 1 -trifluoro-4-phenyl-2-4-butanedione) were reported. Though both of them were dihydrate and had distorted square antiprismatical structure, Gd(pta)3 · 2H2O crystallizes in the P 2 1/n (#14) monoclinic space group and its lattice parameters are a = 1.4141(6) nm, b = 1.0708(3) nm, c =2.2344(4) nm, β =952.4(2)°, and Gd(bfa)3· 2H2O crystallizes in P 212121 orthorhombic space group and its lattice parameters were a = 1.322 (1) nm, b = 2.295 (1) nm, c = 1. 0786(8) nm. In the meantime, the authors had finished a systematic investigation on the ^155Gd Mossbauer isomer shift (δ) of various Gd(Ⅲ) metal complexes having a different coordination number (C.N.) and different ratios coordinating oxygen to nitrogen. A tendency for the 6 value to decrease with an increase in the C.N, and the number of the nitrogen atom coordinating to Gd was confirmed. This indicated that the Gd-O and/or Gd-N bond in the investigated Gd(Ⅲ) metal complexes had a small covalent contribution, which was possible to be deduced from the O and/or N atoms of the lisands donating electrons to 6s, 5d, and 4f orbitals of Gd.
文摘The reduction process of Eu2O3 on TiO2 and other supports is investigated in detail by Mossbauer spectroscopy. The reducibility of Eu2O3 is greatly enhanced when it is supported on a surface of support. This is due to the solid-solid interaction between the oxide and the support.
文摘Magnetic anisotropies of the amorphous alloy Fe_(71)Ni_(10)B_(13)Si_(14)C_2 annealed in magnetic field have been studied using Mossbauer spectroscopy and X-ray diffraction.It is shown that the distribution of moments in the annealed sample are determined by both stress-produced and thermomagnetic treatment-induced magnetic anisotropies.
文摘The iron atomic location in Al(93.3-x)Fe(4.3)V(0.7)Si(1.7)Mm(x)(x=0, 1, 3, 6) alloys was investigated by means of Mossbauer spectroscopy and X-ray diffraction. The results show that the appearance of bcc a-Al-13(Fe, V)(3)Si dispersive particles existing in Al-Fe-V-Si alloy is suppressed by:the addition of misch metal, A new Al-Fe-V-Si-Mm amorphous alloy is formed when the concentration of misch metal is up to 6 at%, in the meantime, the corresponding structural analysis is made using Voigt-based fitting method.
文摘The selective dielectric heating of microwave energy to convert a portion of each pyrite particle to moderately magnetic pyrrhotite has been suggested to enhance the magnetic separation of inorganic sulfur from coal. The results for Mossbauer analyses show that the considerable amount of pyrrhotite produced during microwave irradiation, carrying with it some of non--magnetic pyrite (unconverted), ferrous sulfate, and troilite, is completely removed from coal after magnetic separation. The opthoum desulfurization efficiency can be attsined by appropriately controlling the irradiation time to maximize the amount of pyrrhotite formed pyrite decomposition.Excessive irradiation would be disadvantageous for improving magnetic separation due to the further decomposition of pyrrhotite to antiferromagnetic troilite.
文摘The study of natural magnetic sands is instrumental to investigate the geological aspects of their formation and of the origin of their territory. In particular, Mossbauer spectroscopy provides unique information on their iron content and on the oxidation state of iron in their mineral composition. The Italian coast on the Mediterranean Sea near Rome is known for the presence of highly magnetic black sands of volcanic origin. A study of the room temperature Mossbauer spectrum, powder X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetic measurements of a sample of black magnetic sand collected on the seashore of the town of Ladispoli is performed. This study reveals magnetite as main constituent with iron in both tetrahedral and octahedral sites. Minor constituents are the iron minerals hematite and ilmenite, the iron containing minerals diopsite, gossular, and allanite, as well as ubiquitous sanidine, quartz, and calcite.
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90505007 and 10774061)
文摘To explore the mechanism of carbonyl iron flake composites for microwave complex permeability, this paper investigates the feature of the flakes. The shape anisotropy was certified by the results of the magnetization hysteresis loops and the Mossbauer spectra. Furthermore, the shape anisotropy was used to explain the origin of composite microwave performance, and the calculated results agree with the experiment. It is believed that the shape anisotropy dominates microwave complex permeability, and the natural resonance plays main role in flake.
文摘Mossbauer spectroscopy has been used to study the morphology of iron oxides formed during the oxidation of superalloys, such as SS-304L (1.4306S), Incoloy-800H, Incoloy-825, UBHA-25L, Sanicro-28 and Inconel-690, at 1200℃ exposed in air and steam environments for 400 h. The basic aim was to identify and compare the iron oxides qualitatively and quantitatively, formed during the oxidation of these alloys in two environments. The behaviour of alloy UBHA-25L in high temperature oxidation in both environments indicates that it has good oxidation resistance especially in steam, whereas Sanicro-28 has excellent corrosion resistance in steam environment. In air oxidation of Inconel-690 no iron oxide, with established Mossbauer parameters, was detected.
文摘Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR,^ 13C and ^1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3 μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous YaFe4AlO12 was produced after heating the respective complex at 1000 ℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.
基金Hi-Tech Research and Develop-ment Program of China under the grant No.2002AA302202 the National Natural Scicnce Foundation of China through grant No.20490210.
文摘Physical and chemical properties of the magnetic nanoparticles coated with oleate have been investigated by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, infrared spectra (IR) and the contact angle device. The results show that doped Al ions in Fe3O4 nanoparticles are located on the octahedral sites of the spinel structure. Oleate is coated on the magnetic nanoparticles with two layers by chemical absorbing, the outer layer can be washed away. The wetting of the surface of magnetic nanoparticles coated with monolayer has been changed from hydrophilicity to hydrophobicity, and the nanoparticles can be dispersed very well in some organic solutions.