Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle...Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle.This study longitudinally investigated the relationship between the mineral composition in human milk and the Z-scores of infants among Tibetan mother-infant dyads during their first 6 months postpartum through a prospective cohort study.The results show that the minerals of Na,Mg,K,Ca,Cu,Zn,and Se were of higher levels in colostrum than other lactation stages.Several minerals were below the recommended values for infants according to Chinese dietary guidelines.Besides,a large proportion of infant Z-scores were below-2 as lactation period continued.Multivariate statistical analysis revealed that classifications and correlations in varying degrees were observed between minerals in human milk and infant Z-scores.These findings will be advantageous for research upon Chinese early nutrition and progress of tailor-made infant formula.展开更多
The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and...The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and access information.Among the many smartphones available,those operating on the Android platform dominate,being the most widely used type.This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years.Therefore,there is an urgent need to develop new methods for detecting Android malware.The literature contains numerous works related to Android malware detection.As far as our understanding extends,we are the first ones to identify dangerous combinations of permissions and system calls to uncover malicious behavior in Android applications.We introduce a novel methodology that pairs permissions and system calls to distinguish between benign and malicious samples.This approach combines the advantages of static and dynamic analysis,offering a more comprehensive understanding of an application’s behavior.We establish covalent bonds between permissions and system calls to assess their combined impact.We introduce a novel technique to determine these pairs’Covalent Bond Strength Score.Each pair is assigned two scores,one for malicious behavior and another for benign behavior.These scores serve as the basis for classifying applications as benign or malicious.By correlating permissions with system calls,the study enables a detailed examination of how an app utilizes its requested permissions,aiding in differentiating legitimate and potentially harmful actions.This comprehensive analysis provides a robust framework for Android malware detection,marking a significant contribution to the field.The results of our experiments demonstrate a remarkable overall accuracy of 97.5%,surpassing various state-of-the-art detection techniques proposed in the current literature.展开更多
Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)t...Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.展开更多
This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By in...This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
Background: The healthy bond that develops prenatally between the mother and her infant is important for the neuropsychological development and development of the child. In stressful situations and mental disorders, t...Background: The healthy bond that develops prenatally between the mother and her infant is important for the neuropsychological development and development of the child. In stressful situations and mental disorders, the development of this bond is inhibited. With this study, an attempt is made to investigate whether the COVID-19 pandemic affected the development of the mother-infant bond. Methods: We have searched in the databases, PubMed, Google Scholar, PsycINFO, from July to October 2023 and we have found 18 related articles. Results: Most studies supported a lower mother-infant attachment during the pandemic period. We also found increased rates of depressive symptoms, anxiety and post-traumatic stress during the pandemic. Conclusions: The period of the pandemic and the psychological factors were the right conditions for the reduced development of the mother-infant bond. In epidemiological outbreaks, the mental health of the mother and her relationship with the infant should be a priority for perinatal care professionals.展开更多
The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challe...The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.展开更多
Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pa...Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...展开更多
A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to dis...A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of (D(7), D(C) ) being an n-tilting pair over an Artin algebra for an n-tilting pair ( C, 7) is given. And, a necessary and sufficient condition of ( T^*, C^* ) being an ntilting pair over a selfinjective Artin algebra for an n-tilting pair (C, 7) is also given.展开更多
This paper will briefly discuss the issue of how different participant relations affect adjacency pairs in conversation analysis.In terms of the affects or influence on adjacency pairs,this article only places its foc...This paper will briefly discuss the issue of how different participant relations affect adjacency pairs in conversation analysis.In terms of the affects or influence on adjacency pairs,this article only places its focus on the ways how the first pair part (FPP) and second pair part (SPP) in conversation are relevant to each other.As for the final result,the data back up such conclusions:in conversation between acquaintance /friends,family members,and as such,the relevance are built up either directly or indirectly.However,in conversation between strangers,this relevance seems to be constructed only directly.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibi...Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is (4/9)~n after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is (2/3)~n after n-hop teleportation.展开更多
A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the proper...A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.展开更多
The concept of the binary sequence pair is generalized from a single binary sequence. Binary sequence pairs are applied in many fields of radar, sonar or communication systems, in which signals with optimal periodic c...The concept of the binary sequence pair is generalized from a single binary sequence. Binary sequence pairs are applied in many fields of radar, sonar or communication systems, in which signals with optimal periodic correlation are required. Several types of almost perfect binary sequence pairs of length T = 2q are constructed, where q is an odd number. These almost perfect binary sequence pairs are based on binary ideal sequence or binary ideal two-level correlation sequence pairs by using Chinese remainder theorem. For these almost perfect binary sequence pairs with good balanced property, their corresponding divisible difference set pairs(DDSPs) are also derived.展开更多
In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we gi...In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we give some sufficient conditions to ensure the existence of F -sensitive pairs. In particular, each non-minimal E system (M system, P system) has positive lower density ( Fs , Fr resp.)-sensitive pairs almost everywhere. Moreover, each non-minimal M system is Fts -sensitive. Finally, by some examples we show that: (1) F -sensitivity can not imply the existence of F -sensitive pairs. That means there exists an F -sensitive system, which has no F -sensitive pairs. (2) There is no immediate relation between the existence of sensitive pairs and Li-Yorke chaos, i.e., there exists a system (X, f ) without Li-Yorke scrambled pairs, which has κ B -sensitive pairs almost everywhere. (3) If the system (G, f ) is sensitive, where G is a finite graph, then it has κ B -sensitive pairs almost everywhere.展开更多
By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies o...By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.展开更多
In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, thr...In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, three algorithms are presented for answering this kind of query. Among of them, two-phase Range+Join and Join+Range algorithms adopt the strategy that changes the execution order of range and closest pairs queries, and constrained heap-based algorithm utilizes extended distance functions to prune search space and minimize the pruning distance. Experimental results show that constrained heap-base algorithm has better applicability and performance than two-phase algorithms.展开更多
基金supported by the National Natural Science Foundation of China(32272316)Beijing Innovation Team of Livestock Industry Technology System(BAIC05-2022)Guangxi Science and Technology Project(AD20297088).
文摘Nutrients in human milk,including minerals,relate growth and development of breast-fed infants.Tibetan mother-infant dyads possess unique characteristics on early nutrition due to their featured long-lasting lifestyle.This study longitudinally investigated the relationship between the mineral composition in human milk and the Z-scores of infants among Tibetan mother-infant dyads during their first 6 months postpartum through a prospective cohort study.The results show that the minerals of Na,Mg,K,Ca,Cu,Zn,and Se were of higher levels in colostrum than other lactation stages.Several minerals were below the recommended values for infants according to Chinese dietary guidelines.Besides,a large proportion of infant Z-scores were below-2 as lactation period continued.Multivariate statistical analysis revealed that classifications and correlations in varying degrees were observed between minerals in human milk and infant Z-scores.These findings will be advantageous for research upon Chinese early nutrition and progress of tailor-made infant formula.
文摘The prevalence of smartphones is deeply embedded in modern society,impacting various aspects of our lives.Their versatility and functionalities have fundamentally changed how we communicate,work,seek entertainment,and access information.Among the many smartphones available,those operating on the Android platform dominate,being the most widely used type.This widespread adoption of the Android OS has significantly contributed to increased malware attacks targeting the Android ecosystem in recent years.Therefore,there is an urgent need to develop new methods for detecting Android malware.The literature contains numerous works related to Android malware detection.As far as our understanding extends,we are the first ones to identify dangerous combinations of permissions and system calls to uncover malicious behavior in Android applications.We introduce a novel methodology that pairs permissions and system calls to distinguish between benign and malicious samples.This approach combines the advantages of static and dynamic analysis,offering a more comprehensive understanding of an application’s behavior.We establish covalent bonds between permissions and system calls to assess their combined impact.We introduce a novel technique to determine these pairs’Covalent Bond Strength Score.Each pair is assigned two scores,one for malicious behavior and another for benign behavior.These scores serve as the basis for classifying applications as benign or malicious.By correlating permissions with system calls,the study enables a detailed examination of how an app utilizes its requested permissions,aiding in differentiating legitimate and potentially harmful actions.This comprehensive analysis provides a robust framework for Android malware detection,marking a significant contribution to the field.The results of our experiments demonstrate a remarkable overall accuracy of 97.5%,surpassing various state-of-the-art detection techniques proposed in the current literature.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0705000)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861 and 11974178).
文摘Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.
文摘This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
文摘Background: The healthy bond that develops prenatally between the mother and her infant is important for the neuropsychological development and development of the child. In stressful situations and mental disorders, the development of this bond is inhibited. With this study, an attempt is made to investigate whether the COVID-19 pandemic affected the development of the mother-infant bond. Methods: We have searched in the databases, PubMed, Google Scholar, PsycINFO, from July to October 2023 and we have found 18 related articles. Results: Most studies supported a lower mother-infant attachment during the pandemic period. We also found increased rates of depressive symptoms, anxiety and post-traumatic stress during the pandemic. Conclusions: The period of the pandemic and the psychological factors were the right conditions for the reduced development of the mother-infant bond. In epidemiological outbreaks, the mental health of the mother and her relationship with the infant should be a priority for perinatal care professionals.
基金sponsored by the Shell Petroleum Development Company of Nigeria Limited(SPDC).
文摘The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.
文摘Water and ethanol were selected as refrigerants, 13x molecular sieve, silica gel, activated carbon and adsorbents NA and NB prepared by authors were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration system was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance parameters of adsorption refrigerat...
基金The National Natural Science Foundation of China (No.10971024)the Specialized Research Fund for the Doctoral Program of Higher Education ( No. 200802860024)+1 种基金the Natural Science Foundation of Jiangsu Province ( No. BK2010393 )Scientific Research Foundation of Guangxi University ( No. XJZ100246)
文摘A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of (D(7), D(C) ) being an n-tilting pair over an Artin algebra for an n-tilting pair ( C, 7) is given. And, a necessary and sufficient condition of ( T^*, C^* ) being an ntilting pair over a selfinjective Artin algebra for an n-tilting pair (C, 7) is also given.
文摘This paper will briefly discuss the issue of how different participant relations affect adjacency pairs in conversation analysis.In terms of the affects or influence on adjacency pairs,this article only places its focus on the ways how the first pair part (FPP) and second pair part (SPP) in conversation are relevant to each other.As for the final result,the data back up such conclusions:in conversation between acquaintance /friends,family members,and as such,the relevance are built up either directly or indirectly.However,in conversation between strangers,this relevance seems to be constructed only directly.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
基金Project supported by the National Natural Science Foundation of China(Grant No.61571105)the Prospective Future Network Project of Jiangsu Province,China(Grant No.BY2013095-1-18)the Independent Project of State Key Laboratory of Millimeter Waves,China(Grant No.Z201504)
文摘Multi-hop teleportation has significant value due to long-distance delivery of quantum information. Many studies about multi-hop teleportation are based on Bell pairs, partially entangled pairs or W state. The possibility of multi-hop teleportation constituted by partially entangled pairs relates to the number of nodes. The possibility of multi-hop teleportation constituted by double W states is (4/9)~n after n-hop teleportation. In this paper, a multi-hop teleportation scheme based on W state and EPR pairs is presented and proved. The successful possibility of quantum information transmitted hop by hop through intermediate nodes is deduced. The possibility of successful transmission is (2/3)~n after n-hop teleportation.
基金Supported by National Natural Science Foundation of China (69972042),Natural Science Fund of Hebei Provice(599245)and Science Foundation of Yanshan University
文摘A new set of binary sequences-Periodic Complementary Binary Sequence Pair (PCSP) is proposed. A new class of block design-Difference Family Pair (DFP) is also proposed.The relationship between PCSP and DFP, the properties and existing conditions of PCSP and the recursive constructions for PCSP are given.
基金supported by the National Natural Science Foundation of China(6160140161501395+6 种基金6160139961671402)Natural Science Foundation of Hebei Province(F2015203150F2016203293F2016203312)Natural Science Research Programs of Hebei Educational Committee(QN2016120)the Independent Research Programs for Young Teachers of Yanshan University(15LGB013)
文摘The concept of the binary sequence pair is generalized from a single binary sequence. Binary sequence pairs are applied in many fields of radar, sonar or communication systems, in which signals with optimal periodic correlation are required. Several types of almost perfect binary sequence pairs of length T = 2q are constructed, where q is an odd number. These almost perfect binary sequence pairs are based on binary ideal sequence or binary ideal two-level correlation sequence pairs by using Chinese remainder theorem. For these almost perfect binary sequence pairs with good balanced property, their corresponding divisible difference set pairs(DDSPs) are also derived.
基金supported by NSFC (10771079 10871186+5 种基金 11071084 11026095)NSF of Guangdong Province (10451063101006332)supported by NSFC (11001071)Hefei University of Technology (GDBJ2008-024 2010HGXJ0200)
文摘In the present paper, we define sensitive pairs via Furstenberg families and discuss the relation of three definitions: sensitivity, F -sensitivity and F -sensitive pairs, see Theorem 1. For transitive systems, we give some sufficient conditions to ensure the existence of F -sensitive pairs. In particular, each non-minimal E system (M system, P system) has positive lower density ( Fs , Fr resp.)-sensitive pairs almost everywhere. Moreover, each non-minimal M system is Fts -sensitive. Finally, by some examples we show that: (1) F -sensitivity can not imply the existence of F -sensitive pairs. That means there exists an F -sensitive system, which has no F -sensitive pairs. (2) There is no immediate relation between the existence of sensitive pairs and Li-Yorke chaos, i.e., there exists a system (X, f ) without Li-Yorke scrambled pairs, which has κ B -sensitive pairs almost everywhere. (3) If the system (G, f ) is sensitive, where G is a finite graph, then it has κ B -sensitive pairs almost everywhere.
基金supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900)the China Postdoctoral Science Special Foundation (Grant No. 201003009)+2 种基金the China Postdoctoral Science Foundation (GrantNo. 20090460145)the Fundamental Research Funds for the Central Universities (Grant No. 201012200053)the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411)
文摘By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.
基金Supported by National Natural Science Foundationof China (60073045)
文摘In this paper, constrained K closest pairs query is introduced, wbich retrieves the K closest pairs satisfying the given spatial constraint from two datasets. For data sets indexed by R trees in spatial databases, three algorithms are presented for answering this kind of query. Among of them, two-phase Range+Join and Join+Range algorithms adopt the strategy that changes the execution order of range and closest pairs queries, and constrained heap-based algorithm utilizes extended distance functions to prune search space and minimize the pruning distance. Experimental results show that constrained heap-base algorithm has better applicability and performance than two-phase algorithms.