An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. c...An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.展开更多
Numerous transmethylation reactions are required for normal plant growth and development. S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reac...Numerous transmethylation reactions are required for normal plant growth and development. S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reactions, S-adenosylhomocysteine (SAH) that would otherwise competitively inhibit methyltransferase (MT) activities. Here, we report on investigations to understand how the SAH produced in the nucleus is metabolized by SAHH and ADK. Localization analyses using green fluorescent fusion proteins demonstrated that both enzymes are capable of localizing to the cytoplasm and the nucleus, although no obvious nuclear localization signal was found in their sequences. Deletion analysis revealed that a 41-amino-acid segment of SAHH (GlylS^-Lys19~) is required for nuclear targeting of this enzyme. This segment is surface exposed, shows unique sequence conservation patterns in plant SAHHs, and possesses additional features of protein-protein interaction motifs. ADK and SAHH interact in Arabidopsb via this segment and also interact with an mRNA cap MT. We propose that the targeting of this complex is directed by the nuclear localization signal of the MT; other MTs may similarly target SAHH/ADK to other subcellular compartments to ensure uninterrupted transmethylation.展开更多
基金Supported by High Technology Research and Development Program of China (863 Program, No. 2006AA100309)
文摘An open reading frame (lcn61) of lymphocystis disease virus China (LCDV-cn), probably responsible for encoding putative zinc-finger proteins was amplified and inserted into pET24a (+) vector. Then it expressed in E. coli BL21 (DE3), and His-tag fusion protein of high yield was obtained. It was found that the fusion protein existed in E. coli mainly as inclusion bodies. The bioinformatics analysis indicates that LCN61 is C2H2 type zinc-finger protein containing four C2H2 zinc-finger motifs. This work provides a theory for functional research of lcn61 gene.
文摘Numerous transmethylation reactions are required for normal plant growth and development. S-adenosylhomocysteine hydrolase (SAHH) and adenosine kinase (ADK) act coordinately to recycle the by-product of these reactions, S-adenosylhomocysteine (SAH) that would otherwise competitively inhibit methyltransferase (MT) activities. Here, we report on investigations to understand how the SAH produced in the nucleus is metabolized by SAHH and ADK. Localization analyses using green fluorescent fusion proteins demonstrated that both enzymes are capable of localizing to the cytoplasm and the nucleus, although no obvious nuclear localization signal was found in their sequences. Deletion analysis revealed that a 41-amino-acid segment of SAHH (GlylS^-Lys19~) is required for nuclear targeting of this enzyme. This segment is surface exposed, shows unique sequence conservation patterns in plant SAHHs, and possesses additional features of protein-protein interaction motifs. ADK and SAHH interact in Arabidopsb via this segment and also interact with an mRNA cap MT. We propose that the targeting of this complex is directed by the nuclear localization signal of the MT; other MTs may similarly target SAHH/ADK to other subcellular compartments to ensure uninterrupted transmethylation.