Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the stati...Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.展开更多
To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an o...To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an object entering the video scene is located and tracked by the CamShift based algorithm,then its track parameters are obtained.Next,the track parameters are processed to form the observation sequence of HMM,and the motion behavior modeling and probability evaluation are implemented based on HMM.At last,the behavior identification and behavior statistics of the tracked traffic object in video are achieved.Experiments show that this method can be used to sort and recognize the motion behavior of the traffic object by its corresponding behavior track,and to do some statistics or corresponding process schemes.展开更多
Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles...Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.展开更多
The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of fl...The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of floating LNG(Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants.In particular,this study focuses on the investigation of the roll response of FLNG hull in free-decay motions,white noise waves and also in irregular waves.Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out.Response Amplitude Operators(RAOs) and time histories of the responses are obtained for sway,roll and yaw motions.Obvious Low Frequency(LF) components of the roll motions are observed,which may be out of expectation.To facilitate the physical understanding of this phenomenon,we filter the roll motions at the period of 30 s into two parts:the Wave Frequency(WF) motions and the Low Frequency(LF) motions respectively.The results indicate that the LF motions are closely related to the sway and yaw motions.Possible reasons for the presence of the LF motions of roll have been discussed in detail,through the comparison with the sway and yaw motions.As for the numerical part,the simulation of the modeled case is conducted with the help of the software SESAM.A good agreement between experiments and calculations is reported within the scope of trends.However,the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.展开更多
Animals have evolved a variety of behavior patterns to adapt to the environment. Motion-capture technology is utilized to quantify and characterize locomotor behaviors to reveal the mechanisms of animal motion. In the...Animals have evolved a variety of behavior patterns to adapt to the environment. Motion-capture technology is utilized to quantify and characterize locomotor behaviors to reveal the mechanisms of animal motion. In the capture of flexible, small animals with complex locomotor behaviors, the markers interfere with each other easily, and the motion forms(bending, twisting) of the moving parts are obviously different;thus, it is a great challenge to realize accurate quantitative characterization of complex locomotor behaviors. The correlation between the marker properties, including the size and space length, and the precision of the system are revealed in this paper, and the effects of diverse marker shapes on the capturing accuracy of the captured objects in different motion forms were tested. Results showed that the precision of system is significantly improved when the ratio of the space length to the diameter of the markers is larger than four;for the capture of the spatial twisting motion of the flexible object, the hexagon markers had the lowest spatial lost-marker rate relative to the circle, triangle, and square. Customized markers were used to capture the locomotor behavior of the gecko-inspired robot(rigid connection) and the gecko(flexible connection). The results showed that this marking technology can achieve high accuracy of motion capture for geckos(the average deviation was approximately 0.32 mm, and the average deviation’s variation rate was approximately 0.96%). In this paper, the marking technology for the motion capture of flexible, small animals with complex motion is proposed;it can effectively improve the system precision as well as the capture accuracy, and realize the quantitative characterization of the complex motion of flexible, small objects. It provides a reliable technical means to deeply study the evolution of the motion function of small animals and advance systematic research of motion-capture technology.展开更多
This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based...This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully.展开更多
基金Supported by the Program for Innovation Research of Science in Harbin Institute of Technology under Grant No A201413
文摘Based on fluid equations, we show a time-dependent self-consistent nonlinear model for void formation in magnetized dusty plasmas. The cylindrical configuration is applied to better illustrate the effects of the static magnetic field, considering the azimuthal motion of the dusts. Tile nonlinear evolution of the dust void and the rotation of the dust particles are then investigated numerically. The results show that, similar to the unmagnetized one-dimensional model, the radial ion dragplays a crucial role in the evolution of the void. Moreover, the dust rotation is driven by the azimuthal ion drag force exerting on the dust. As the azimuthal component of ion velocity increases linearly with the strength of the magnetic field, tile azimuthal component of dust velocity increases synchronously. Moreover, the angular velocity gradients of the dust rotation show a sheared dust flow around the void.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2004AA742209)
文摘To extract the track parameters of a traffic object in traffic video and identify its motion behavior,a new method is proposed based on CamShift(Continuously Adaptive Mean Shift)and HMM(Hidden Markov Model).First,an object entering the video scene is located and tracked by the CamShift based algorithm,then its track parameters are obtained.Next,the track parameters are processed to form the observation sequence of HMM,and the motion behavior modeling and probability evaluation are implemented based on HMM.At last,the behavior identification and behavior statistics of the tracked traffic object in video are achieved.Experiments show that this method can be used to sort and recognize the motion behavior of the traffic object by its corresponding behavior track,and to do some statistics or corresponding process schemes.
基金Projects(50674018, 50474055) supported by the National Natural Science Foundation of China
文摘Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.
基金supported by the Science Foundation of Science and Technology Commission of Shanghai Municipality(Grant No.11ZR1417800)the National Natural Science Foundation of China(Grant No.50879045)the LRET(Lloyds Register Educational Trust) to the joint centre involving University College London,Shanghai Jiao Tong University and Harbin Engineering University
文摘The present paper does an experimental and numerical investigation of the hydrodynamic interaction and the response of a single point turret-moored Floating Liquefied Natural Gas(FLNG) system,which is a new type of floating LNG(Liquid Natural Gas) platform that consists of a ship-type FPSO hull equipped with LNG storage tanks and liquefaction plants.In particular,this study focuses on the investigation of the roll response of FLNG hull in free-decay motions,white noise waves and also in irregular waves.Model tests of the FLNG system in 60%H filling condition excited by both white noise waves and irregular waves combined with steady wind and current have been carried out.Response Amplitude Operators(RAOs) and time histories of the responses are obtained for sway,roll and yaw motions.Obvious Low Frequency(LF) components of the roll motions are observed,which may be out of expectation.To facilitate the physical understanding of this phenomenon,we filter the roll motions at the period of 30 s into two parts:the Wave Frequency(WF) motions and the Low Frequency(LF) motions respectively.The results indicate that the LF motions are closely related to the sway and yaw motions.Possible reasons for the presence of the LF motions of roll have been discussed in detail,through the comparison with the sway and yaw motions.As for the numerical part,the simulation of the modeled case is conducted with the help of the software SESAM.A good agreement between experiments and calculations is reported within the scope of trends.However,the numerical simulations should be further improved for the prediction of the FLNG system in the heading sea.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31601870 and 51435008)Natural Science Foundation of Jiangsu Province, China (Grant No. SBK20160800 to Zhouyi WANG)Jiangsu Provincial Key Laboratory of Bionic Functional Materials
文摘Animals have evolved a variety of behavior patterns to adapt to the environment. Motion-capture technology is utilized to quantify and characterize locomotor behaviors to reveal the mechanisms of animal motion. In the capture of flexible, small animals with complex locomotor behaviors, the markers interfere with each other easily, and the motion forms(bending, twisting) of the moving parts are obviously different;thus, it is a great challenge to realize accurate quantitative characterization of complex locomotor behaviors. The correlation between the marker properties, including the size and space length, and the precision of the system are revealed in this paper, and the effects of diverse marker shapes on the capturing accuracy of the captured objects in different motion forms were tested. Results showed that the precision of system is significantly improved when the ratio of the space length to the diameter of the markers is larger than four;for the capture of the spatial twisting motion of the flexible object, the hexagon markers had the lowest spatial lost-marker rate relative to the circle, triangle, and square. Customized markers were used to capture the locomotor behavior of the gecko-inspired robot(rigid connection) and the gecko(flexible connection). The results showed that this marking technology can achieve high accuracy of motion capture for geckos(the average deviation was approximately 0.32 mm, and the average deviation’s variation rate was approximately 0.96%). In this paper, the marking technology for the motion capture of flexible, small animals with complex motion is proposed;it can effectively improve the system precision as well as the capture accuracy, and realize the quantitative characterization of the complex motion of flexible, small objects. It provides a reliable technical means to deeply study the evolution of the motion function of small animals and advance systematic research of motion-capture technology.
基金supported by the Fundamental Research Funds for the Central Universities of China University of Mining and Technology(No.2014ZDPY21)
文摘This study proposes a novel approach to study stress field distribution and overlying ground pressure behavior in shallow seam mining in gully terrain.This approach combines numerical simulations and field tests based on the conditions of gully terrain in the Chuancao Gedan Mine.The effects of gully terrain on the in situ stress field of coal beds can be identified by the ratio of self-weight stress to vertical stress(η) at the location corresponding to the maximum vertical stress.Based on the function η =j(h),the effect of gully terrain on the stress field of overlying strata of the entire field can be characterized as a significantly affected area,moderately affected area,or non-affected area.Working face 6106 in the Chuancao Gedan Mine had a coal bed Jepth <80 m and was located in what was identified as a significantly affected area.Hence,mining may cause sliding of the gully slope and increased loading(including significant dynamic loading) on the roof strata.Field tests suggest that significant dynamic pressures were observed at the body and foot of the gully slope,and that dynamic loadings were observed upslope of the working face expansion,provided that the expanding direction of the working face is parallel to the gully.
基金Supported by National Natural Science Foundation of China(62071125)the Natural Science Foundation of Fujian Province(2021J01581,2018J01805)the Scientific Research Foundation of Fuzhou University(GXRC-18083)。