<p align="left"> <span style="font-family:Verdana;">To investigate the relationship between muscle strength and sEMG of biceps brachii during elbow flexion by measuring the maximum musc...<p align="left"> <span style="font-family:Verdana;">To investigate the relationship between muscle strength and sEMG of biceps brachii during elbow flexion by measuring the maximum muscle strength and sEMG value of normal children and adults, and to analyze their sources, so as to lay a theoretical foundation for the method of motor program reconstruction to restore the function after brain injury, 30 healthy children aged 9 - 10 years and 30 adults aged 20 - 30 years were randomly selected. The muscle strength and sEMG of biceps brachii during elbow flexion were detected and recorded, and the data were statistically analyzed. The muscle strength of children was significantly lower than that of adults (P < 0.001), and the sEMG value of biceps brachii was significantly lower than that of adults (P < 0.001), but the sEMG value per kilogram force of children was significantly higher than that of adults (P < 0.01). The results show that there was a very significant difference in pull (efficiency) between adults and children when there was no significant difference in SEMG signal intensity. This is because although children’s central nervous system has matured, the muscle tissue has not been well trained, resulting in insufficient muscle strength. The muscle strength of adults is significantly higher than that of children, because they have been exercising for a long time after the development of the central nervous system. It is proved that sEMG signal is not produced by muscle contraction itself, but comes from the motor program signal of central nervous system which drives muscle contraction, and it is produced before muscle contraction.</span> </p>展开更多
文摘<p align="left"> <span style="font-family:Verdana;">To investigate the relationship between muscle strength and sEMG of biceps brachii during elbow flexion by measuring the maximum muscle strength and sEMG value of normal children and adults, and to analyze their sources, so as to lay a theoretical foundation for the method of motor program reconstruction to restore the function after brain injury, 30 healthy children aged 9 - 10 years and 30 adults aged 20 - 30 years were randomly selected. The muscle strength and sEMG of biceps brachii during elbow flexion were detected and recorded, and the data were statistically analyzed. The muscle strength of children was significantly lower than that of adults (P < 0.001), and the sEMG value of biceps brachii was significantly lower than that of adults (P < 0.001), but the sEMG value per kilogram force of children was significantly higher than that of adults (P < 0.01). The results show that there was a very significant difference in pull (efficiency) between adults and children when there was no significant difference in SEMG signal intensity. This is because although children’s central nervous system has matured, the muscle tissue has not been well trained, resulting in insufficient muscle strength. The muscle strength of adults is significantly higher than that of children, because they have been exercising for a long time after the development of the central nervous system. It is proved that sEMG signal is not produced by muscle contraction itself, but comes from the motor program signal of central nervous system which drives muscle contraction, and it is produced before muscle contraction.</span> </p>