Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new a...Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new approach to detection and diagnosis of motor bearing faults based on induction motor stator current analysis. Tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high nose levels, a modulation signal bispectrum (MSB) is used in this paper to detect and diagnose different motor bearing defects. The results show that bearing faults can induced a detestable amplitude increases at its characteristic frequencies. MSB peaks show a clear difference at these frequencies whereas conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in extract small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also show that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component.展开更多
Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aime...Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.展开更多
The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emergin...The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) and the Zero-Sequence Voltage Component (ZSVC) to diagnose the stator faults of Induction Motors. The unalleviated study of the robustness of the industrial appliances is obligatory to verdict the fault of the machines at precipitate stages and thwart the machine from brutal damage. For all kinds of industry, a machine failure escorts to a diminution in production and cost increases. The Motor Current Signature Analysis (MCSA) is referred as the most predominant way to diagnose the faults of electrical machines. Since the detailed analysis of the current spectrum, the method will portray the typical fault state. This paper aims to present dissimilar stator faults which are classified under electrical faults using MCSA and the comparison of simulation and hardware results. The magnitude of these fault harmonics analyzes in detail by means of Finite-Element Method (FEM). The anticipated method can effectively perceive the trivial changes too during the operation of the motor and it shows in the results.展开更多
A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift curr...A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.展开更多
Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to cal...Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to calculate the thrust of the LIM using the instantaneous current value. A three-phase LIM model with 12 slots and a singlelayer winding was designed to validate this method. The experiments show that when the current is small, the calculated results basically agree with the experiments. The agreement becomes worse with the increase of the current because of the saturation of the primary iron core. The proposed formula is suitable when the iron core of the LIM primary is in an unsaturated state.展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on trad...The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on traditional current measurements in a BLDCM drive system are discussed. A novel method for assessing the PWM information and measuring the motor phase currents by a dc link current sensor is proposed. An attractive feature of the proposed method is the simplicity with the current sample processing because there is no need to incorporate the conduction information of the power switches or diodes. Only the single sided PWM or the double sided complementary PWM is needed with the proposed technique.展开更多
Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Ba...Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.展开更多
This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm posses...This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.展开更多
针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周...针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。展开更多
文摘Failure of induction motors are a large concern due to its influence over industrial production. Motor current signature analysis (MCSA) is common practice in industry to find motor faults. This paper presents a new approach to detection and diagnosis of motor bearing faults based on induction motor stator current analysis. Tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high nose levels, a modulation signal bispectrum (MSB) is used in this paper to detect and diagnose different motor bearing defects. The results show that bearing faults can induced a detestable amplitude increases at its characteristic frequencies. MSB peaks show a clear difference at these frequencies whereas conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in extract small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also show that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component.
文摘Background: Transcranial direct current stimulation (tDCS) across cortical brain areas appears to improve various forms of pain, yet evidence of tDCS efficiency and ideal stimulation target is lacking. This study aimed to compare the add-on analgesic efficacy of concentric electrode transcranial direct current stimulation (CE-tDCS) stimulation over the primary motor cortex versus the insular cortex on the management of chronic postmastectomy pain. Method: Prospective randomized double-blind sham-controlled study enrolled eighty patients with chronic postmastectomy pain that were randomly assigned to four groups: active motor (AM), sham motor (SM), active insula (AI) and sham insula (SI) group, each received 5 sessions for 20-minute duration with 2 mA tDCS over the targeted area of the contralateral side of pain. Our primary outcome was VAS score, the secondary outcomes were VDS score, LANSS score and depression symptoms by HAM-D scores, assessment was done at 4 time points (prestimulation, after 5<sup>th</sup> session, 15<sup>th</sup> day and one month after the last session). Results: Both active tDCS groups (motor and insula) showed reduction of VAS (P Conclusion: Active tDCS stimulation either targeting the primary motor cortex or the insula cortex has add-on analgesic effect for controlling neuropathic chronic post mastectomy pain and the maximum effect was at 15 days after the last session.
文摘The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) and the Zero-Sequence Voltage Component (ZSVC) to diagnose the stator faults of Induction Motors. The unalleviated study of the robustness of the industrial appliances is obligatory to verdict the fault of the machines at precipitate stages and thwart the machine from brutal damage. For all kinds of industry, a machine failure escorts to a diminution in production and cost increases. The Motor Current Signature Analysis (MCSA) is referred as the most predominant way to diagnose the faults of electrical machines. Since the detailed analysis of the current spectrum, the method will portray the typical fault state. This paper aims to present dissimilar stator faults which are classified under electrical faults using MCSA and the comparison of simulation and hardware results. The magnitude of these fault harmonics analyzes in detail by means of Finite-Element Method (FEM). The anticipated method can effectively perceive the trivial changes too during the operation of the motor and it shows in the results.
文摘A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor (SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.
基金supported by the National Natural Science Foundation of China (Nos. 50588201,50672078, and 50872116)the National Basic Research Program (973 program, No. 2007CB616906)+1 种基金the Australian Research Council (Grant No. DP0559872 and DP0881739)the PCSIRT of the Ministry of Education of China (No. IRT0751)
文摘Because of the end effect, a linear induction motor (LIM) runs in an asymmetrical state even though the winding of each phase is symmetric. Based on the basic principle of the LIM, a new approach was proposed to calculate the thrust of the LIM using the instantaneous current value. A three-phase LIM model with 12 slots and a singlelayer winding was designed to validate this method. The experiments show that when the current is small, the calculated results basically agree with the experiments. The agreement becomes worse with the increase of the current because of the saturation of the primary iron core. The proposed formula is suitable when the iron core of the LIM primary is in an unsaturated state.
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
文摘The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on traditional current measurements in a BLDCM drive system are discussed. A novel method for assessing the PWM information and measuring the motor phase currents by a dc link current sensor is proposed. An attractive feature of the proposed method is the simplicity with the current sample processing because there is no need to incorporate the conduction information of the power switches or diodes. Only the single sided PWM or the double sided complementary PWM is needed with the proposed technique.
基金This research was funded by Sichuan Science and Technology Program(2023YFSY0013).
文摘Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
文摘This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.
文摘针对传统永磁同步电机(permanent magnet synchronous motor,PMSM)三矢量模型预测电流控制(three-vector model predictive current control,TV-MPCC)存在开关频率不固定和计算复杂的问题,提出一种固定开关频率TV-MPCC策略。利用前一周期的零电压矢量和参考电压矢量所在扇区来快速筛选所需最优电压矢量和次优电压矢量,避免了无效枚举计算,从而降低了开关频率和计算复杂度。引入系统d和q轴电流差参数,计算各电压矢量的作用时间,确保电压矢量作用时间恒大于零和开关频率固定。以三相两电平电压型逆变器驱动的表贴式PMSM为被控对象,通过仿真和实验对传统TV-MPCC策略和所提三矢量固定开关频率模型预测电流控制策略进行对比研究,仿真和实验结果表明,所提策略在保证系统稳态和动态性能的基础上,在固定和降低开关频率的同时,降低了计算复杂度。