Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use o...Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.展开更多
Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literatu...Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron(MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory(LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine(OC-SVM) algorithm. The performance has been evaluated in terms area under curve(AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %.展开更多
Reliable induction motor (IM) fault detection techniques are very useful in industries to diagnose IM defects and improve operational performance. An adaptive empirical mode decomposition (EMD) technology is proposed ...Reliable induction motor (IM) fault detection techniques are very useful in industries to diagnose IM defects and improve operational performance. An adaptive empirical mode decomposition (EMD) technology is proposed in this paper for rotor bar fault detection in IMs. As the characteristic fault frequency will change with operating conditions related to load and speed, the proposed adaptive EMD technique correlates fault features over different frequency bands and intrinsic mode function (IMF) sidebands. The adaptive EMD technique uses the first IMF to detect the fault type and the second IMF as an indicator to predict the fault severity. It can overcome the problems of the sensitivity of sideband frequencies related to the speed and load oscillations. The effectiveness of the proposed adaptive EMD technique is verified by experimental tests under different motor conditions.展开更多
For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experi...For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experiment, it turned out that arc discharge and slot discharge occur in motor fault produce MF with certain laws. This result proved the feasibility of the sensor and sensing method in MF analysis, and revealed possibility of a new method in fault detection.展开更多
Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely repo...Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely reported as a condition monitoring technique in the detection and identification of individual andmultiple Induction Motor(IM)faults.However,checking the fault detection and classification with deep learning models and its comparison among them selves or conventional approaches is rarely reported in the literature.Therefore,in this work,wepresent the detection and identification of induction motor faults with MCSA and three Deep Learning(DL)models namely MLP,LSTM,and 1D-CNN.Initially,we have developed the model of Squirrel Cage induction motor in MATLAB and simulated it for single phasing and stator winding faults(SWF)using Fast Fourier Transform(FFT),Short Time Fourier Transform(STFT),and Continuous Wavelet Transform(CWT)to detect and identify the healthy and unhealthy conditions with phase to ground,single phasing and in multiple fault conditions using Motor Current Signature Analysis.The faults impact on stator current is presented in the time and frequency domain(i.e.,power spectrum).The simulation results show that the scalogram has shown good results in time-frequency analysis for fault and showing its impact on the energy of current during individual fault and multiple fault conditions.This is further investigated with three deep learning models(i.e.,MLP,LSTM,and 1D-CNN)for checking the fault detection and identification(i.e.,classification)improvement in a three-phase induction motor.By simulating the three-phase induction motor in various healthy and unhealthy conditions in MATLAB,we have collected current signature data in the time domain,labeled them accordingly and created the 50 thousand samples dataset for DL models.All the DL models are trained and validated with a suitable number of architecture layers.By simulation,the multiclass confusion matrix,precision,recall,and F1-score are obtained in several conditions.The result shows that the stator current signature of the motor can be used to detect individual and multiple faults.Moreover,deep learning models can efficiently classify the induction motor faults based on time-domain data of the stator current signature.In deep learning(DL)models,the LSTM has shown better accuracy among all other three models.These results show that employing deep learning in fault detection and identification of induction motors can be very useful in predictive maintenance to avoid shutdown and production cycle stoppage in the industry.展开更多
Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geomet...Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.展开更多
A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge...A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.展开更多
DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model...DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.展开更多
In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the mo...In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy展开更多
A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular techn...A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.展开更多
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the...Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.展开更多
The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emergin...The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) and the Zero-Sequence Voltage Component (ZSVC) to diagnose the stator faults of Induction Motors. The unalleviated study of the robustness of the industrial appliances is obligatory to verdict the fault of the machines at precipitate stages and thwart the machine from brutal damage. For all kinds of industry, a machine failure escorts to a diminution in production and cost increases. The Motor Current Signature Analysis (MCSA) is referred as the most predominant way to diagnose the faults of electrical machines. Since the detailed analysis of the current spectrum, the method will portray the typical fault state. This paper aims to present dissimilar stator faults which are classified under electrical faults using MCSA and the comparison of simulation and hardware results. The magnitude of these fault harmonics analyzes in detail by means of Finite-Element Method (FEM). The anticipated method can effectively perceive the trivial changes too during the operation of the motor and it shows in the results.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
基金supported by the National Key Research and Development Program of China (No.2020YFB1713503)the Fundamental Research Funds for the Central Universities (No.20720190009)2019 Industry-University-Research Cooperation Project of Aero Engine Corporation of China (No.HFZL2019CXY02).
文摘Many kinds of electrical equipment are used in civil and building engineering.The motor is one of the main power components of this electrical equipment,which can provide stable power output.During the long-term use of motors,various motor faults may occur,which affects the normal use of electrical equipment and even causes accidents.It is significant to apply fault diagnosis for the motors at the construction site.Aiming at the problem that signal data of faulty motor lack diversity,this research designs a multi-layer perceptron Wasserstein generative adversarial network,which is used to enhance training data through distribution fusion.A discrete wavelet decomposition algorithm is employed to extract the low-frequency wavelet coefficients from the original motor current signals.These are used to train themulti-layer perceptron Wasserstein generative adversarial model.Then,the trainedmodel is applied to generate fake current wavelet coefficients with the fused distribution.A motor fault classification model consisting of a feature extractor and pattern recognizer is built based on perceptron.The data augmentation experiment shows that the fake dataset has a larger distribution than the real dataset.The classification model trained on a real dataset,fake dataset and combined dataset achieves 21.5%,87.2%,and 90.1%prediction accuracy on the unseen real data,respectively.The results indicate that the proposed data augmentation method can effectively generate fake data with the fused distribution.The motor fault classification model trained on a fake dataset has better generalization performance than that trained on a real dataset.
基金supported by the Italian University and Research Consortium CINECA
文摘Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron(MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory(LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine(OC-SVM) algorithm. The performance has been evaluated in terms area under curve(AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %.
文摘Reliable induction motor (IM) fault detection techniques are very useful in industries to diagnose IM defects and improve operational performance. An adaptive empirical mode decomposition (EMD) technology is proposed in this paper for rotor bar fault detection in IMs. As the characteristic fault frequency will change with operating conditions related to load and speed, the proposed adaptive EMD technique correlates fault features over different frequency bands and intrinsic mode function (IMF) sidebands. The adaptive EMD technique uses the first IMF to detect the fault type and the second IMF as an indicator to predict the fault severity. It can overcome the problems of the sensitivity of sideband frequencies related to the speed and load oscillations. The effectiveness of the proposed adaptive EMD technique is verified by experimental tests under different motor conditions.
文摘For the purpose of motor fault real-time monitoring, this research developed a nano-silicon ni- tride film based magnetic field (MF) sensor, and applied this sensor in MF detection of two common faults. Through experiment, it turned out that arc discharge and slot discharge occur in motor fault produce MF with certain laws. This result proved the feasibility of the sensor and sensing method in MF analysis, and revealed possibility of a new method in fault detection.
基金the support of the‘Haptics,Human Robotics,and Condition Monitoring Lab’Established in Mehran University of Engineering and Technology,Jamshoro,under the umbrella of the National Centre of Robotics and Automation.
文摘Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely reported as a condition monitoring technique in the detection and identification of individual andmultiple Induction Motor(IM)faults.However,checking the fault detection and classification with deep learning models and its comparison among them selves or conventional approaches is rarely reported in the literature.Therefore,in this work,wepresent the detection and identification of induction motor faults with MCSA and three Deep Learning(DL)models namely MLP,LSTM,and 1D-CNN.Initially,we have developed the model of Squirrel Cage induction motor in MATLAB and simulated it for single phasing and stator winding faults(SWF)using Fast Fourier Transform(FFT),Short Time Fourier Transform(STFT),and Continuous Wavelet Transform(CWT)to detect and identify the healthy and unhealthy conditions with phase to ground,single phasing and in multiple fault conditions using Motor Current Signature Analysis.The faults impact on stator current is presented in the time and frequency domain(i.e.,power spectrum).The simulation results show that the scalogram has shown good results in time-frequency analysis for fault and showing its impact on the energy of current during individual fault and multiple fault conditions.This is further investigated with three deep learning models(i.e.,MLP,LSTM,and 1D-CNN)for checking the fault detection and identification(i.e.,classification)improvement in a three-phase induction motor.By simulating the three-phase induction motor in various healthy and unhealthy conditions in MATLAB,we have collected current signature data in the time domain,labeled them accordingly and created the 50 thousand samples dataset for DL models.All the DL models are trained and validated with a suitable number of architecture layers.By simulation,the multiclass confusion matrix,precision,recall,and F1-score are obtained in several conditions.The result shows that the stator current signature of the motor can be used to detect individual and multiple faults.Moreover,deep learning models can efficiently classify the induction motor faults based on time-domain data of the stator current signature.In deep learning(DL)models,the LSTM has shown better accuracy among all other three models.These results show that employing deep learning in fault detection and identification of induction motors can be very useful in predictive maintenance to avoid shutdown and production cycle stoppage in the industry.
基金funded by the Science Foundation of China Academy of Railway Science,grant number 2020YJ175.
文摘Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.
文摘A fault diagnosis expert system for a heavy motor used in a rolling mill is established in this paper. The fault diagnosis knowledge base was built, and its knowledge was represented by production rules. The knowledge base includes daily inspection system, brief diagnosis system and precise diagnosis system. A pull down menu was adopted for the management of the knowledge base. The system can run under the help of expert system development tools. Practical examples show that the expert system can diagnose faults rapidly and precisely.
文摘DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.
文摘In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2017XKQY032)
文摘A precise detection of the fault feature parameter of motor current is a new research hotspot in the broken rotor bar(BRB) fault diagnosis of induction motors. Discrete Fourier transform(DFT) is the most popular technique in this field, owing to low computation and easy realization. However, its accuracy is often limited by the data window length, spectral leakage, fence e ect, etc. Therefore, a new detection method based on a global optimization algorithm is proposed. First, a BRB fault current model and a residual error function are designed to transform the fault parameter detection problem into a nonlinear least-square problem. Because this optimization problem has a great number of local optima and needs to be resolved rapidly and accurately, a joint algorithm(called TR-MBPSO) based on a modified bare-bones particle swarm optimization(BPSO) and trust region(TR) is subsequently proposed. In the TR-MBPSO, a reinitialization strategy of inactive particle is introduced to the BPSO to enhance the swarm diversity and global search ability. Meanwhile, the TR is combined with the modified BPSO to improve convergence speed and accuracy. It also includes a global convergence analysis, whose result proves that the TR-MBPSO can converge to the global optimum with the probability of 1. Both simulations and experiments are conducted, and the results indicate that the proposed detection method not only has high accuracy of parameter estimation with short-time data window, e.g., the magnitude and frequency precision of the fault-related components reaches 10^(-4), but also overcomes the impacts of spectral leakage and non-integer-period sampling. The proposed research provides a new BRB detection method, which has enough precision to extract the parameters of the fault feature components.
基金National Natural Science Foundation of China(No.61105114)the Key Technology R&D Program of Jiangsu Province,China(No.BE2010189)
文摘Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors.
文摘The proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) to diagnosis the stator faults of Induction Motors. The performance of the proposed method deals with the emerging technique called as Motor Current Signature Analysis (MCSA) and the Zero-Sequence Voltage Component (ZSVC) to diagnose the stator faults of Induction Motors. The unalleviated study of the robustness of the industrial appliances is obligatory to verdict the fault of the machines at precipitate stages and thwart the machine from brutal damage. For all kinds of industry, a machine failure escorts to a diminution in production and cost increases. The Motor Current Signature Analysis (MCSA) is referred as the most predominant way to diagnose the faults of electrical machines. Since the detailed analysis of the current spectrum, the method will portray the typical fault state. This paper aims to present dissimilar stator faults which are classified under electrical faults using MCSA and the comparison of simulation and hardware results. The magnitude of these fault harmonics analyzes in detail by means of Finite-Element Method (FEM). The anticipated method can effectively perceive the trivial changes too during the operation of the motor and it shows in the results.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.