The brake-by-wire(BBW)system is an essential part of the intelligent electric vehicle,which is determination of the braking safety and recovery efficiency.To design a safe and efficient booster motor,the design of boo...The brake-by-wire(BBW)system is an essential part of the intelligent electric vehicle,which is determination of the braking safety and recovery efficiency.To design a safe and efficient booster motor,the design of booster motor for BBW system is discussed in this paper.Through comparative analysis,experimental simulation and assessment argument,the scheme of designing a booster motor for brake-by-wire system is completely described.First,the mainstream structure of the BBW system and the main challenges it faces in the assisted motor are discussed.Second,comparing the motors of different types and structures,the motor body and control system scheme suitable for the characteristics of the booster motor system are determined.Then,through the simulation analysis of the ansoft and matlab,the optimization scheme of the motor and performance improvement are proposed.Further,through the actual design of a set of the booster motor system,the safe and efficient motor designing are verified,and the problems involving functional safety are discussed.Finally,focus on the problem while simulation and experiment,some important countermeasures to improve current technology and prospect of in-depth study are pointed out.展开更多
选择了配备有P1和P3的双电机插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)作为研究平台。在能量回收过程中,P1和P3电机可以同时进行,相比其他构型而言有着更加明显的能量回收优势。车辆制动过程中,当P1电机效率高于P3时,...选择了配备有P1和P3的双电机插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)作为研究平台。在能量回收过程中,P1和P3电机可以同时进行,相比其他构型而言有着更加明显的能量回收优势。车辆制动过程中,当P1电机效率高于P3时,优先选用P1电机进行制动,P3电机提供剩余所需制动力;当P3电机效率高于或等于P1时,则优先选用P3电机进行制动,P1电机弥补剩余所需的制动力。以搭载AMT(电控机械制动变速箱)的双电机插电式混合动力汽车为研究对象,在保证制动安全性的前提下,为尽可能地回收能量,提出一种基于双电机能量回收的前后轴制动力分配、机电制动力分配以及双电机制动力分配的多级制动力分配策略。结合Matlab/Simulink搭建整车模型,并进行仿真分析。仿真结果显示,制动能量回收率最高能达到66.56%,回收效果良好。展开更多
基金supported in part by the Excellent Youth Program of Education Department under Project 21B0124in part by the Natural Science Foundation of China under Grant 62003288+1 种基金in part by the Innovation Platform and Talent Program of Hunan Province under Grant 2021RC2095Supported by China Postdoctoral Science Foundation 2022M712673.
文摘The brake-by-wire(BBW)system is an essential part of the intelligent electric vehicle,which is determination of the braking safety and recovery efficiency.To design a safe and efficient booster motor,the design of booster motor for BBW system is discussed in this paper.Through comparative analysis,experimental simulation and assessment argument,the scheme of designing a booster motor for brake-by-wire system is completely described.First,the mainstream structure of the BBW system and the main challenges it faces in the assisted motor are discussed.Second,comparing the motors of different types and structures,the motor body and control system scheme suitable for the characteristics of the booster motor system are determined.Then,through the simulation analysis of the ansoft and matlab,the optimization scheme of the motor and performance improvement are proposed.Further,through the actual design of a set of the booster motor system,the safe and efficient motor designing are verified,and the problems involving functional safety are discussed.Finally,focus on the problem while simulation and experiment,some important countermeasures to improve current technology and prospect of in-depth study are pointed out.
文摘选择了配备有P1和P3的双电机插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)作为研究平台。在能量回收过程中,P1和P3电机可以同时进行,相比其他构型而言有着更加明显的能量回收优势。车辆制动过程中,当P1电机效率高于P3时,优先选用P1电机进行制动,P3电机提供剩余所需制动力;当P3电机效率高于或等于P1时,则优先选用P3电机进行制动,P1电机弥补剩余所需的制动力。以搭载AMT(电控机械制动变速箱)的双电机插电式混合动力汽车为研究对象,在保证制动安全性的前提下,为尽可能地回收能量,提出一种基于双电机能量回收的前后轴制动力分配、机电制动力分配以及双电机制动力分配的多级制动力分配策略。结合Matlab/Simulink搭建整车模型,并进行仿真分析。仿真结果显示,制动能量回收率最高能达到66.56%,回收效果良好。