The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The re...The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.展开更多
It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen r...It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen reduction reaction and oxygen evolution reaction(ORR and OER),but still full of vital challenges.Herein,we synthesize the novel“three–in–one”catalyst that engineers core–shell Mott–Schottky Co_(9)S_(8)/Co heterostructure on the defective reduced graphene oxide(Co_(9)S_(8)/Co–rGO).The Co_(9)S_(8)/Co–rGO catalyst exhibits abundant Mott–Schottky heterogeneous–interfaces,the well–defined core–shell nanostructure as well as the defective carbon architecture,which provide the multiple guarantees for enhancing the electron transfer and ion/oxygen transport,thus boosting the catalytic ORR and OER activities in neutral electrolyte.As expected,the integrated core–shell Mott–Schottky Co_(9)S_(8)/Co–rGO catalyst delivers the most robust and efficient rechargeable ZABs performance in neutral solution electrolytes accompanied with a power density of 59.5 mW cm^(-2) and superior cycling stability at 5 mA cm^(-2) over 200 h.This work not only emphasizes the rational designing of the high–efficient bifunctional oxygen catalysts from the fundamental understanding of accelerating the electron transfer and ion/oxygen transport,but also sheds light on the practical application prospects in more friendly environmentally neutral rechargeable ZABs.展开更多
基金the National R&D Infrastructure and Facility Development Program of China(No.2005DKA10400)
文摘The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.
基金financially supported by the National Natural Science Foundation of China (21775142)the Sino–German Center for Research Promotion (Grants GZ 1351)+1 种基金the Natural Science Foundation of Shandong Province (ZR2020ZD10)the Research Funds for the Central Universities (202061031)。
文摘It is significant for the rational construction of the high–efficient bifunctional electrocatalysts for in–depth understandings of how to improve the electron transfer and ion/oxygen transport in catalyzing oxygen reduction reaction and oxygen evolution reaction(ORR and OER),but still full of vital challenges.Herein,we synthesize the novel“three–in–one”catalyst that engineers core–shell Mott–Schottky Co_(9)S_(8)/Co heterostructure on the defective reduced graphene oxide(Co_(9)S_(8)/Co–rGO).The Co_(9)S_(8)/Co–rGO catalyst exhibits abundant Mott–Schottky heterogeneous–interfaces,the well–defined core–shell nanostructure as well as the defective carbon architecture,which provide the multiple guarantees for enhancing the electron transfer and ion/oxygen transport,thus boosting the catalytic ORR and OER activities in neutral electrolyte.As expected,the integrated core–shell Mott–Schottky Co_(9)S_(8)/Co–rGO catalyst delivers the most robust and efficient rechargeable ZABs performance in neutral solution electrolytes accompanied with a power density of 59.5 mW cm^(-2) and superior cycling stability at 5 mA cm^(-2) over 200 h.This work not only emphasizes the rational designing of the high–efficient bifunctional oxygen catalysts from the fundamental understanding of accelerating the electron transfer and ion/oxygen transport,but also sheds light on the practical application prospects in more friendly environmentally neutral rechargeable ZABs.