Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon...Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon(SOC) fractions in forest ecosystems. This study had two aims:(1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and(2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains(SW Poland, Central Europe). The content of the most labile fraction of carbon(dissolved organic carbon,DOC) decreases with altitude, but the content of fulvic acids(FA), clearly increases in the zone above 1000 m asl, while the stabile fraction(humins, nonhydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests(Norway spruce), while a smaller-under deciduous forests(European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above1000 m asl may lead to a substantial increase in the stable humus fraction(mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization.In the lower zone(below 1000 m asl), a decrease in the most stable humus forms can be expected,accompanied by an increase of DOC contribution,which will result in a reduction in SOC pools. Overall,the expected prevailing(spatial) effect is a decreasing contribution of the most stable humus fractions,which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.展开更多
Soil respiration (SR) Wis one of the largest contributors of terrestrial CO_2 to the atmosphere.Environmental as well as physicochemical parameters influence SR and thus, different land use practices impact the emissi...Soil respiration (SR) Wis one of the largest contributors of terrestrial CO_2 to the atmosphere.Environmental as well as physicochemical parameters influence SR and thus, different land use practices impact the emissions of soil CO_2. In this study, we measured SR, bi-monthly, over a one-year period in a terrace tea plantation, a forest tea plantation and a secondary forest, in a subtropical mountain area in Xishuangbanna, China. Along with the measurement of SR rates, soil characteristics for each of the land use systems were investigated. Soil respiration rates in the different land use systems did not differ significantly during the dry season, ranging from2.7±0.2 μmol m^(-2) s^(-1) to 2.8±0.2 μmol m^(-2) s^(-1). During the wet season, however, SR rates were significantly larger in the terrace tea plantation(5.4±0.5 μmol m^(-2)s^(-1)) and secondary forest(4.9±0.4 μmol m^(-2)s^(-1)) than in the forest tea plantation(3.7±0.2 μmol m^(-2) s^(-1)).This resulted in significantly larger annual soil CO_2 emissions from the terrace tea and secondary forest,than from the forest tea plantation. It is likely that these differences in the SR rates are due to the 0.5times lower soil organic carbon concentrations in thetop mineral soil in the forest tea plantation, compared to the terrace tea plantation and secondary forest.Furthermore, we suggest that the lower sensitivity to temperature variation in the forest tea soil is a result of the lower soil organic carbon concentrations. The higher SR rates in the terrace tea plantation were partly due to weeding events, which caused CO_2 emission peaks that contributed almost 10% to the annual CO_2 flux. Our findings suggest that moving away from heavily managed tea plantations towards low-input forest tea can reduce the soil CO_2 emissions from these systems. However, our study is a casestudy and further investigations and upscaling are necessary to show if these findings hold true at a landscape level.展开更多
The clay mineral association, oxides of clay fraction and surface charge properties of 7 soils, which are developed from granite, located at different altitudes of the Tianbao Mountains were studied. Results indicate ...The clay mineral association, oxides of clay fraction and surface charge properties of 7 soils, which are developed from granite, located at different altitudes of the Tianbao Mountains were studied. Results indicate that with the increase in altitude, 1) the weathering process and desilicification of soil clay minerals became weaker, whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger; 2) the contents of amorphous and complex aluminum and iron, and the activity of aluminum and iron oxides for soil clay fraction increased; and 3) the amount of variable negative charge, anion exchange capacity and the values of PZC and PZNC also increased. The activity of aluminum and iron oxides, the accumulation of aluminum, and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.展开更多
Atmospheric lead (Pb) and other trace metals can transport over long distance and deposit on remote alpine ecosystems. In this work, the soil profiles, litter and dominant mosses along a large altitude were collecte...Atmospheric lead (Pb) and other trace metals can transport over long distance and deposit on remote alpine ecosystems. In this work, the soil profiles, litter and dominant mosses along a large altitude were collected on Ao Mountain, Central China, to obtain the spatial distributions of Pb in these materials, decipher the possible factors controlling the distribution, and quantitatively distinguish the natural versus anthropogenic sources of Pb through the Pb isotopic tracing and biomonitoring. The results show that soil Pb concentrations (mg/kg) decreased significantly with depth, and they were markedly higher in the 0 (42.6 + 2.7) and A (36.4 + 2.2) horizons than in the litter (7.20 ~ 1.9) and mosses (28.o ~ 3-9)- The Pb enrichment in the surface soils (0 and A horizons), litter and mosses existed in the relatively high altitudes, which was attributed to the influences from atmospheric wet deposition, plants, soil Dhvsicochemical DroDerties and human activitv. ThePb isotopic ratios identified the Pb sources as originating mainly from Chinese coal combustion, mining and smelting. Atmospheric Pb from southeastern, southwestern and northwestern regions could be deposited in the alpine ecosystem by long distance atmospheric transport. The anthropogenic Pb reached over 50% in the 0 and A horizons, and over 70% in the litter and mosses, which corresponded to the concentrations of 26.9, 17.7, 5.92 and 21.2 mg/kg, respectively. The results indicate that the mutual effects of climate and regional human activity could increase the Pb accumulation in remote alpine ecosystems.展开更多
In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic eleme...In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic elements of the environment,soil and cover deposits,erosion soil decay;the changes in the quantity and quality of karst waters:contamination at swallow holes,contamination of karst springs;and the biogenic factors:surface vegetation coverage by the corine land cover method,plant-ecological examinations,qualification of surface waters with the help of biological water labeling.We recognized that the increasing human activities during the past few centuries have had significant impact on the investigated landscapes of karst areas because of their spatial sensitivity.In the scope of our research we concluded that the landscape changes due to natural and human effects can vary strongly on the different karst areas.These differences can arise from the climatic and geomorphologic situation,the coverlayer's qualities,etc.,but primarily from the different utilization of the investigated karst areas(e.g.the intensity,characteristics and territorial extension of utilization).On the spot investigation we detected traces of new and fast geomorphological processes(gully formation,landslides,collapses,new sinkhole development) and landforms(sinkholes,gullies,swallow holes),which are clear evidences of the effect of climatic changes.展开更多
There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation ...There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation in this area. Aluminum (Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K) and magnesium (Mg) contents of 237 topsoil samples covering a 2.8-km altitudinal gradient in uncultivated areas along the Qinghai-Tibet Railway of China were measured using inductively coupled plasma atomic emission spectroscopy. The spatial distribution of the elements and its relationship to the parent rocks and climatic parameters were analyzed. Soils along the gradient are derived from a range of parent materials, but most are less than 30 cm deep with little development (Cambisols). Soil Al, Fe and Mg contents showed a decreasing trend from the start station (Xining Station) to end station (Lhasa Station) of the Qinghai-Tibet Railway, whereas soil K and Na contents were relative stable from Xining Station to the Kunlun Mountains and then increased gradually. Soil Ca content was lower in the southern part of the Tanggula Mountains. The major soil element contents clearly reflected the parent rock and climatic influences. Soils with higher Ca content appeared in areas with Ca-Mg carbonate rocks, soils with higher Al were found in areas with silicate-rich and high-Al silicate clastic rocks and silicate-rich aluminosilicate loose sediments. Soils with higher K and Na contents appeared in areas with high-K, high-Na and silicate-rich aluminosilicate rocks. Soil Na and K contents were affected by temperature, whereas the contents of Mg, Fe, Ca and Al were more affected by precipitation. Soil Na and K contents increased with increasing temperatures, whereas the contents of Mg, Fe, Ca and Al decreased with increasing precipitation. This analysis provides a relationship between soil properties and rapidly changing environmental conditions. The data can be used to investigate the effect of the climate or land use change on soil properties.展开更多
基金financially supported by the National Science Centre as research grant No2013/11/N/ST10/01528
文摘Global and local climate changes could disturb carbon sequestration and carbon stocks in forest soils. Thus, it is important to characterize the stability of soil organic matter and the dynamics of soil organic carbon(SOC) fractions in forest ecosystems. This study had two aims:(1) to evaluate the effects of altitude and vegetation on the content of labile and stabile forms of organic carbon in the mountain soils; and(2) to assess the impact of the properties of soil organic matter on the SOC pools under changing environmental conditions. The studies were conducted in the Karkonosze Mountains(SW Poland, Central Europe). The content of the most labile fraction of carbon(dissolved organic carbon,DOC) decreases with altitude, but the content of fulvic acids(FA), clearly increases in the zone above 1000 m asl, while the stabile fraction(humins, nonhydrolyzing carbon) significantly decreases. A higher contribution of stabile forms was found in soils under coniferous forests(Norway spruce), while a smaller-under deciduous forests(European beech) and on grasslands. The expected climate change and the ongoing land use transformations in the zone above1000 m asl may lead to a substantial increase in the stable humus fraction(mainly of a non-hydrolyzing carbon) and an increase in the SOC pools, even if humus acids are characterized by a lower maturity and greater mobility favorable to soil podzolization.In the lower zone(below 1000 m asl), a decrease in the most stable humus forms can be expected,accompanied by an increase of DOC contribution,which will result in a reduction in SOC pools. Overall,the expected prevailing(spatial) effect is a decreasing contribution of the most stable humus fractions,which will be associated with a reduction in the SOC pools in medium-high mountains of temperate zone of Central Europe.
基金financially supported by the Yunnan Department of Sciences and Technology of China (Grant No. 2012EB056)Further support was supplied by the CGIAR Research Program 6: Forests, Trees and Agroforestry
文摘Soil respiration (SR) Wis one of the largest contributors of terrestrial CO_2 to the atmosphere.Environmental as well as physicochemical parameters influence SR and thus, different land use practices impact the emissions of soil CO_2. In this study, we measured SR, bi-monthly, over a one-year period in a terrace tea plantation, a forest tea plantation and a secondary forest, in a subtropical mountain area in Xishuangbanna, China. Along with the measurement of SR rates, soil characteristics for each of the land use systems were investigated. Soil respiration rates in the different land use systems did not differ significantly during the dry season, ranging from2.7±0.2 μmol m^(-2) s^(-1) to 2.8±0.2 μmol m^(-2) s^(-1). During the wet season, however, SR rates were significantly larger in the terrace tea plantation(5.4±0.5 μmol m^(-2)s^(-1)) and secondary forest(4.9±0.4 μmol m^(-2)s^(-1)) than in the forest tea plantation(3.7±0.2 μmol m^(-2) s^(-1)).This resulted in significantly larger annual soil CO_2 emissions from the terrace tea and secondary forest,than from the forest tea plantation. It is likely that these differences in the SR rates are due to the 0.5times lower soil organic carbon concentrations in thetop mineral soil in the forest tea plantation, compared to the terrace tea plantation and secondary forest.Furthermore, we suggest that the lower sensitivity to temperature variation in the forest tea soil is a result of the lower soil organic carbon concentrations. The higher SR rates in the terrace tea plantation were partly due to weeding events, which caused CO_2 emission peaks that contributed almost 10% to the annual CO_2 flux. Our findings suggest that moving away from heavily managed tea plantations towards low-input forest tea can reduce the soil CO_2 emissions from these systems. However, our study is a casestudy and further investigations and upscaling are necessary to show if these findings hold true at a landscape level.
基金Project supported by the National Natural Science Foundation of China
文摘The clay mineral association, oxides of clay fraction and surface charge properties of 7 soils, which are developed from granite, located at different altitudes of the Tianbao Mountains were studied. Results indicate that with the increase in altitude, 1) the weathering process and desilicification of soil clay minerals became weaker, whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger; 2) the contents of amorphous and complex aluminum and iron, and the activity of aluminum and iron oxides for soil clay fraction increased; and 3) the amount of variable negative charge, anion exchange capacity and the values of PZC and PZNC also increased. The activity of aluminum and iron oxides, the accumulation of aluminum, and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.
基金supported by National Natural Science Foundation of China(41402313)Key Laboratory of Mountain Surface Processes and Ecological Regulation,Chinese Academy of SciencesYouth Innovation Promotion Association,Chinese Academy of Sciences
文摘Atmospheric lead (Pb) and other trace metals can transport over long distance and deposit on remote alpine ecosystems. In this work, the soil profiles, litter and dominant mosses along a large altitude were collected on Ao Mountain, Central China, to obtain the spatial distributions of Pb in these materials, decipher the possible factors controlling the distribution, and quantitatively distinguish the natural versus anthropogenic sources of Pb through the Pb isotopic tracing and biomonitoring. The results show that soil Pb concentrations (mg/kg) decreased significantly with depth, and they were markedly higher in the 0 (42.6 + 2.7) and A (36.4 + 2.2) horizons than in the litter (7.20 ~ 1.9) and mosses (28.o ~ 3-9)- The Pb enrichment in the surface soils (0 and A horizons), litter and mosses existed in the relatively high altitudes, which was attributed to the influences from atmospheric wet deposition, plants, soil Dhvsicochemical DroDerties and human activitv. ThePb isotopic ratios identified the Pb sources as originating mainly from Chinese coal combustion, mining and smelting. Atmospheric Pb from southeastern, southwestern and northwestern regions could be deposited in the alpine ecosystem by long distance atmospheric transport. The anthropogenic Pb reached over 50% in the 0 and A horizons, and over 70% in the litter and mosses, which corresponded to the concentrations of 26.9, 17.7, 5.92 and 21.2 mg/kg, respectively. The results indicate that the mutual effects of climate and regional human activity could increase the Pb accumulation in remote alpine ecosystems.
基金This presentation gives an account on the results of the study (OTKA Grant:K 79135)
文摘In order to study the karstological processes within the karst ecological system,the geohazards and degradation of karst landscapes on the karst areas of the Bakony mountains(Hungary),we investigated the abiotic elements of the environment,soil and cover deposits,erosion soil decay;the changes in the quantity and quality of karst waters:contamination at swallow holes,contamination of karst springs;and the biogenic factors:surface vegetation coverage by the corine land cover method,plant-ecological examinations,qualification of surface waters with the help of biological water labeling.We recognized that the increasing human activities during the past few centuries have had significant impact on the investigated landscapes of karst areas because of their spatial sensitivity.In the scope of our research we concluded that the landscape changes due to natural and human effects can vary strongly on the different karst areas.These differences can arise from the climatic and geomorphologic situation,the coverlayer's qualities,etc.,but primarily from the different utilization of the investigated karst areas(e.g.the intensity,characteristics and territorial extension of utilization).On the spot investigation we detected traces of new and fast geomorphological processes(gully formation,landslides,collapses,new sinkhole development) and landforms(sinkholes,gullies,swallow holes),which are clear evidences of the effect of climatic changes.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB03030500)the National Key Technology Research and Development Program of China (No.2013BAC04B02)the National Natural Science Foundation of China (Nos.40801042 and 90202012)
文摘There are a series of special mountain soils on the Tibetan Plateau of China in an alpine environment for the high altitude. However, very few studies have focused on major soil elements in relation to soil formation in this area. Aluminum (Al), iron (Fe), calcium (Ca), sodium (Na), potassium (K) and magnesium (Mg) contents of 237 topsoil samples covering a 2.8-km altitudinal gradient in uncultivated areas along the Qinghai-Tibet Railway of China were measured using inductively coupled plasma atomic emission spectroscopy. The spatial distribution of the elements and its relationship to the parent rocks and climatic parameters were analyzed. Soils along the gradient are derived from a range of parent materials, but most are less than 30 cm deep with little development (Cambisols). Soil Al, Fe and Mg contents showed a decreasing trend from the start station (Xining Station) to end station (Lhasa Station) of the Qinghai-Tibet Railway, whereas soil K and Na contents were relative stable from Xining Station to the Kunlun Mountains and then increased gradually. Soil Ca content was lower in the southern part of the Tanggula Mountains. The major soil element contents clearly reflected the parent rock and climatic influences. Soils with higher Ca content appeared in areas with Ca-Mg carbonate rocks, soils with higher Al were found in areas with silicate-rich and high-Al silicate clastic rocks and silicate-rich aluminosilicate loose sediments. Soils with higher K and Na contents appeared in areas with high-K, high-Na and silicate-rich aluminosilicate rocks. Soil Na and K contents were affected by temperature, whereas the contents of Mg, Fe, Ca and Al were more affected by precipitation. Soil Na and K contents increased with increasing temperatures, whereas the contents of Mg, Fe, Ca and Al decreased with increasing precipitation. This analysis provides a relationship between soil properties and rapidly changing environmental conditions. The data can be used to investigate the effect of the climate or land use change on soil properties.