BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase ...BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.展开更多
AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicat...AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.展开更多
Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possibl...Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possible oxidative mechanisms were investigated via observing the induction of micronuclei in polychromatic erythrocytes of mouse bone marrow, and subsequently determining the antioxidative enzyme activities (superoxide dismutase Cu, Zn-SOD, Se-dependent glutathione peroxidase, and catalase), thiobarbituric acid reactive substance contents and protein carbonyl levels in brains and livers of mice. Results showed that the tested coking wastewater caused a significant increase of micronucleus frequencies in a concentration-dependent manner. Also, the sample increased lipid peroxidation and protein oxidation levels, which was accompanied by changes in antioxidative status. Interestingly, pre-treatment with an antioxidant (vitamin C) led to a statistical reduction in the micronucleus frequency caused by coking wastewater. This implies that coking wastewater induces evident genetic damage in mammalian cells, and exposure to polluted areas might pose a potential genotoxic risk to human beings; in the process, oxidative stress played a crucial role.展开更多
基金Supported by Natural Science Foundation of Shandong Province,China,No.ZR2020MH014,No.ZR2021QH179 and No.ZR2021MH182.
文摘BACKGROUND The low survival rate of mesenchymal stem cells(MSCs)caused by anoikis,a form of apoptosis,limits the therapeutic efficacy of MSCs.As a proapoptotic molecule,mammalian Ste20-like kinase 1(Mst1)can increase the production of reactive oxygen species(ROS),thereby promoting anoikis.Recently,we found that Mst1 inhibition could protect mouse bone marrow MSCs(mBMSCs)from H 2 O 2-induced cell apoptosis by inducing autophagy and reducing ROS production.However,the influence of Mst1 inhibition on anoikis in mBMSCs remains unclear.AIM To investigate the mechanisms by which Mst1 inhibition acts on anoikis in isolated mBMSCs.METHODS Poly-2-hydroxyethyl methacrylate-induced anoikis was used following the silencing of Mst1 expression by short hairpin RNA(shRNA)adenovirus transfection.Integrin(ITGs)were tested by flow cytometry.Autophagy and ITGα5β1 were inhibited using 3-methyladenine and small interfering RNA,respe-ctively.The alterations in anoikis were measured by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling and anoikis assays.The levels of the anoikis-related proteins ITGα5,ITGβ1,and phospho-focal adhesion kinase and the activation of caspase 3 and the autophagy-related proteins microtubules associated protein 1 light chain 3 II/I,Beclin1 and p62 were detected by Western blotting.RESULTS In isolated mBMSCs,Mst1 expression was upregulated,and Mst1 inhibition significantly reduced cell apoptosis,induced autophagy and decreased ROS levels.Mechanistically,we found that Mst1 inhibition could upregulate ITGα5 and ITGβ1 expression but not ITGα4,ITGαv,or ITGβ3 expression.Moreover,autophagy induced by upregulated ITGα5β1 expression following Mst1 inhibition played an essential role in the protective efficacy of Mst1 inhibition in averting anoikis.CONCLUSION Mst1 inhibition ameliorated autophagy formation,increased ITGα5β1 expression,and decreased the excessive production of ROS,thereby reducing cell apoptosis in isolated mBMSCs.Based on these results,Mst1 inhibition may provide a promising strategy to overcome anoikis of implanted MSCs.
基金Supported by The Grant of Medicine and Health Key Projects of Zhejiang Province, Science and Technology Fund of Ministry of Health of the People’s Republic of China, No. WKJ2007-2-037Shaoxing Key Project for Science and Technology, No. 2007A23008the Natural Science Foundation of Zhejiang Province, China, No. Y2090337
文摘AIM: To identify the key cytokines involved in hepatic differentiation of mouse bone marrow mesenchymal stem cells (mBM-MSCs) under liver-injury conditions. METHODS: Abdominal injection of CCl4 was adopted to duplicate a mouse acute liver injury model. Global gene expression analysis was performed to evaluate the potential genes involved in hepatic commitment under liver-injury conditions. The cytokines involved in hepatic differentiation of mBM-MSCs was function-ally examined by depletion experiment using specifi c antibodies, followed by rescue experiment and direct inducing assay. The hepatic differentiation was characterized by the expression of hepatic lineage genes and proteins, as well as functional features. RESULTS: Cytokines potentially participating in hepatic fate commitment under liver-injury conditions were initially measured by microarray. Among the up-regulated genes determined, 18 cytokines known to closely relate to liver growth, repair and development, were selected for further identif ication. The f ibroblast growth factor-4 (FGF-4), hepatocyte growth factor (HGF) and oncostatin M (OSM) were fi nally found to be involved in hepatic differentiation of mBM-MSCs under liver-injury conditions. Hepatic differentiation could be dramatically decreased after removing FGF-4, HGF and OSM from the liver-injury conditioned medium, and could be rescued by supplementing these cytokines. The FGF-4, HGF and OSM play different roles in the hepatic differentiation of mBM-MSCs, in which FGF-4 and HGF are essential for the initiation of hepatic differentiation, while OSM is critical for the maturation of hepatocytes. CONCLUSION: FGF-4, HGF and OSM are the key cytokines involved in the liver-injury conditioned medium for the hepatic differentiation of mBM-MSCs.
基金supported by the National Natural Science Foundation of China (No.20977060)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20121401110003)+3 种基金the Project for Science and Technology Development of Shanxi Province(No.20120313009-2)the Natural Science Foundation of Shanxi Province(No.2012021008-1)the Research Project Supported by Shanxi Scholarship Council of China(No.2011-013,2012-009)the Program for the Top Young and Middle aged Innovative Talents of Higher Learning Institutions of Shanxi
文摘Coking wastewater has caused serious health risk in coal-producing areas of China, however its toxic effects have not been well understood. The genotoxicity induced by coking wastewater on mice in vivo and its possible oxidative mechanisms were investigated via observing the induction of micronuclei in polychromatic erythrocytes of mouse bone marrow, and subsequently determining the antioxidative enzyme activities (superoxide dismutase Cu, Zn-SOD, Se-dependent glutathione peroxidase, and catalase), thiobarbituric acid reactive substance contents and protein carbonyl levels in brains and livers of mice. Results showed that the tested coking wastewater caused a significant increase of micronucleus frequencies in a concentration-dependent manner. Also, the sample increased lipid peroxidation and protein oxidation levels, which was accompanied by changes in antioxidative status. Interestingly, pre-treatment with an antioxidant (vitamin C) led to a statistical reduction in the micronucleus frequency caused by coking wastewater. This implies that coking wastewater induces evident genetic damage in mammalian cells, and exposure to polluted areas might pose a potential genotoxic risk to human beings; in the process, oxidative stress played a crucial role.