In the case of a severe accident involving nuclear reactors,an important aspect that should be considered is the leakage of molten material from the inside of the reactor into the environment.These molten materials da...In the case of a severe accident involving nuclear reactors,an important aspect that should be considered is the leakage of molten material from the inside of the reactor into the environment.These molten materials damage other reactor components,such as electrical tubes,grid plates and core catchers.In this study,the moving particle semi-implicit(MPS)method is adopted and improved to analyze the twodimensional downward relocation process of molten Wood’s metal as a representation of molten material in a nuclear reactor.The molten material impinges the Wood’s metal plate(WMP),which is mounted on a rigid dummy stainless steel in a cylindrical test vessel.The breaching process occurs because of heat transfer between the molten material and WMP.The formed breach areas were in good agreement with the experimental results,and they showed that the molten Wood’s metal spread above the WMP.The solid WMP fraction decreased with time until it reached the termination time of the simulation.The present results show that the MPS method can be applied to simulate and analyze the downward relocation process of molten material in the grid plate of a nuclear reactor.展开更多
Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g...Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooper...Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.展开更多
The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results...The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.展开更多
The spatial stability equation of moving jet containing dense suspended solid particles was derived out by means of the continuum phase-coupled model. The stability curves of moving jet far different downstream distan...The spatial stability equation of moving jet containing dense suspended solid particles was derived out by means of the continuum phase-coupled model. The stability curves of moving jet far different downstream distances, Reynolds number of flow-field, particle properties and velocities of jetting device are got by the finite difference method based on the asymptotic method and the Eulerian conservative difference scheme. Founded on the analysis of the obtained stability curves it is found that the positive velocity of jetting device widens the unstable frequency range of flow-field hut the effect of the negative one is contrary. In addition, particles existing in the flow-field curb the instability of flow-field and the effect enhances with the decrease of Reynolds number of flow-field. These conclusions benefit learning the development of moving two-phase jet.展开更多
Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were ...Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were investigated by discrete element method(DEM).AtΩ=15 r/min,increasing the length of moving baffle can increase the fluctuation amplitude of average particle velocity.AtΩ=60 r/min,the influence of the moving baffle on the average velocity fluctuation tends to be more random.At both rotational speeds,the moving baffle causes the average particle velocity to fluctuate more sharply.The moving baffle can enhance particle mixing.AtΩ=15 r/min,the moving baffle with length ofδ=1/3 can best enhance particle mixing.However,atΩ=60 r/min,only the moving baffle with a specific length(δ=1/4)can enhance mixing.This basic research has a positive reference value for the application of the moving baffle in industry.展开更多
In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.Bu...In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.展开更多
Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the...Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.展开更多
Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixe...Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixed into the counter flow liquid by a metal mesh. Experimental materials are air and water, and the particles are complex oxidate powder. Experiments were carried out under the operating conditions: the liquid flow velocity u 0 is 12.6 cm/s, the equivalent diameter d e is 0.6 cm, the mass concentration of particle is 0.2 0 0 ,the average particle diameter is about 10 nm and the density is 2 g/cm 3. The velocity profiles of both frontal and tail vortex areas were measured respectively. The experimental results show that the velocity fields are obviously changed in the existence of particles. In the frontal area of the bubble, both tangential and normal velocities decrease due to the presence of particles, but in tail vortex area, the tangential velocities increase remarkably, and normal velocities rise gradually from the center towards the fringe in the opposite tendency to that of no particles. The influences of flow field change in the presence of particles on gas liquid mass transfer are analyzed and discussed.展开更多
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu...The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.展开更多
Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal part...Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.展开更多
A new MPS(Moving Particle Semi-implicit)method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum.As fluid particles are affected by viscosity,so solid particles ar...A new MPS(Moving Particle Semi-implicit)method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum.As fluid particles are affected by viscosity,so solid particles are affected by friction.The solid particle dynamics for landslides,dumping,and gravity sorting etc.which can be difficult to simulate using conventional MPS methods,are modeled in this paper using the developed multi-solid-particle MPS method that benefits from drawing comparisons with the corresponding fluid particle behaviors.The present MPS results for dumping solid particles are verified against the corresponding DEM(Discrete Element Method)results.The shape and angle of repose for solid particles are shown to be highly dependent on the friction coefficient between grains.The peculiar phenomenon of segregated lamination(gravity sorting)among grains of different densities has been successfully reproduced using the multi-solid-particle MPS method.Lamination quality is found to be dependent on the densities and frictional coefficients of the constituent particles.The behavior of heterogeneous mixtures of multiple solid and liquid particles are also compared and discussed.This newly developed tool offers a window into the physical dynamics of sedimentology that the broader geoscience community might benefit from.展开更多
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, res...The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.展开更多
基金supported by the Pendidikan Magister Menuju Doktor untuk Sarjana Unggul(PMDSU)a research program from the Ministry of Research,Technology and Higher Education,IndonesiaThe authors wish to thank Prof.S.Koshizuka,Prof.M.Sakai and Dr.K.Shibata of the University of Tokyo for their helpful comments and for providing the basic MPS code for fluids。
文摘In the case of a severe accident involving nuclear reactors,an important aspect that should be considered is the leakage of molten material from the inside of the reactor into the environment.These molten materials damage other reactor components,such as electrical tubes,grid plates and core catchers.In this study,the moving particle semi-implicit(MPS)method is adopted and improved to analyze the twodimensional downward relocation process of molten Wood’s metal as a representation of molten material in a nuclear reactor.The molten material impinges the Wood’s metal plate(WMP),which is mounted on a rigid dummy stainless steel in a cylindrical test vessel.The breaching process occurs because of heat transfer between the molten material and WMP.The formed breach areas were in good agreement with the experimental results,and they showed that the molten Wood’s metal spread above the WMP.The solid WMP fraction decreased with time until it reached the termination time of the simulation.The present results show that the MPS method can be applied to simulate and analyze the downward relocation process of molten material in the grid plate of a nuclear reactor.
文摘Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.
基金supported by the National Natural Science Foundation of China(62101014)the National Key Laboratory of Science and Technology on Space Microwave(6142411203307).
文摘Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.
文摘The sensitivity of moving particle semi-implicit(MPS)simulations to numerical parameters is investigated in this study.Although the verifcation and validation(V&V)are important to ensure accurate numerical results,the MPS has poor perfor-mance in convergences with a time step size.Therefore,users of the MPS need to tune numerical parameters to ft results into benchmarks.However,such tuning parameters are not always valid for other simulations.We propose a practical numerical condition for the MPS simulation of a two-dimensional wedge slamming problem(i.e.,an MPS-slamming condition).The MPS-slamming condition is represented by an MPS-slamming number,which provides the optimum time step size once the MPS-slamming number,slamming velocity,deadrise angle of the wedge,and particle size are decided.The simulation study shows that the MPS results can be characterized by the proposed MPS-slamming condition,and the use of the same MPS-slamming number provides a similar fow.
文摘The spatial stability equation of moving jet containing dense suspended solid particles was derived out by means of the continuum phase-coupled model. The stability curves of moving jet far different downstream distances, Reynolds number of flow-field, particle properties and velocities of jetting device are got by the finite difference method based on the asymptotic method and the Eulerian conservative difference scheme. Founded on the analysis of the obtained stability curves it is found that the positive velocity of jetting device widens the unstable frequency range of flow-field hut the effect of the negative one is contrary. In addition, particles existing in the flow-field curb the instability of flow-field and the effect enhances with the decrease of Reynolds number of flow-field. These conclusions benefit learning the development of moving two-phase jet.
基金Project(51676032)supported by the National Natural Science Foundation of ChinaProject(IRT_17R19)supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘Adding a moving baffle to the drum is a new way to enhance the motion and mixing of particles in rotating drums.To obtain its influence on binary particles,horizontal rotating drums provided with a moving baffle were investigated by discrete element method(DEM).AtΩ=15 r/min,increasing the length of moving baffle can increase the fluctuation amplitude of average particle velocity.AtΩ=60 r/min,the influence of the moving baffle on the average velocity fluctuation tends to be more random.At both rotational speeds,the moving baffle causes the average particle velocity to fluctuate more sharply.The moving baffle can enhance particle mixing.AtΩ=15 r/min,the moving baffle with length ofδ=1/3 can best enhance particle mixing.However,atΩ=60 r/min,only the moving baffle with a specific length(δ=1/4)can enhance mixing.This basic research has a positive reference value for the application of the moving baffle in industry.
文摘In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.
基金supported by the National Natural Science Foundation of China(Grant No.11804002)the University Science Research Project of Anhui Province,China(Grant Nos.KJ2019A0792 and KJ2019A0797)the Anhui Jianzhu University Research Project(Grant No.2018QD06)。
文摘Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.
文摘Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixed into the counter flow liquid by a metal mesh. Experimental materials are air and water, and the particles are complex oxidate powder. Experiments were carried out under the operating conditions: the liquid flow velocity u 0 is 12.6 cm/s, the equivalent diameter d e is 0.6 cm, the mass concentration of particle is 0.2 0 0 ,the average particle diameter is about 10 nm and the density is 2 g/cm 3. The velocity profiles of both frontal and tail vortex areas were measured respectively. The experimental results show that the velocity fields are obviously changed in the existence of particles. In the frontal area of the bubble, both tangential and normal velocities decrease due to the presence of particles, but in tail vortex area, the tangential velocities increase remarkably, and normal velocities rise gradually from the center towards the fringe in the opposite tendency to that of no particles. The influences of flow field change in the presence of particles on gas liquid mass transfer are analyzed and discussed.
基金Project (2009Z001) supported by the Important Item in Guangdong-Hong Kong Key Project, ChinaProject (2010B090400297) supported by the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China
文摘The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process.
基金Supported by the Major State Basic Research Development Program of China (2011CB201505), the National Natural Science Foundation of China (50976025) and the Key Proj ect.of Science and Technology of Henan Province (12B610012).
文摘Discrete element model was developed to simulate the ellipsoidal particles moving in the moving bed. Multi-element model was used to describe a ellipsoidal particle, the contact detection algorithm of ellipsoidal particle was developed, and both contact force and gravity force were considered in the models. The simulation results were validated by our experiment. Three algorithms for representing an ellipsoidal particle were compared in macro and micro aspects. The results show that there exists big difference in the microscopic parameters such as kinetic energy, rotational kinetic energy, deformation, contact force and collision number which leads to the difference of macroscopic parameters. The relative error in the discharge rate and tracer particle position is the largest between 3-tangent-element representation and experimental results. The flow pattern is similar for the 5-element and 3-intersection representations. The only difference is the discharge rate of 5-element representation is larger than the experimental value and that of the 3-intersection representation has the contrary result. Finally the 3-intersection- element reoresentation is chosen in the simulation due to less comouting time than that of the 5-element renresentation.
文摘A new MPS(Moving Particle Semi-implicit)method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum.As fluid particles are affected by viscosity,so solid particles are affected by friction.The solid particle dynamics for landslides,dumping,and gravity sorting etc.which can be difficult to simulate using conventional MPS methods,are modeled in this paper using the developed multi-solid-particle MPS method that benefits from drawing comparisons with the corresponding fluid particle behaviors.The present MPS results for dumping solid particles are verified against the corresponding DEM(Discrete Element Method)results.The shape and angle of repose for solid particles are shown to be highly dependent on the friction coefficient between grains.The peculiar phenomenon of segregated lamination(gravity sorting)among grains of different densities has been successfully reproduced using the multi-solid-particle MPS method.Lamination quality is found to be dependent on the densities and frictional coefficients of the constituent particles.The behavior of heterogeneous mixtures of multiple solid and liquid particles are also compared and discussed.This newly developed tool offers a window into the physical dynamics of sedimentology that the broader geoscience community might benefit from.
基金supported by the National Natural Science Foundation of China (11132005 and 50706021)
文摘The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct nu- merical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases, respectively. Lagrangian and Eulerian time scales of both phases are cal- culated using velocity correlation functions. Due to flow anisotropy, micro-time scales are not the same with the theo- retical estimations in large Reynolds number (isotropic) tur- bulence. Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number. The fluid-phase Lagrangian inte- gral time scales increase with distance from the wall, longer than those time scales seen by particles. The Eulerian inte- gral macro-time scales increase in near-wall regions but de- crease in out-layer regions. The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales, and in good agreement with previous measure- ments and numerical predictions. For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions, while away from the walls the micro Lagrangian time scales are longer. The Lagrangian integral time scales are longer than the Eulerian ones. The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.