Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equ...Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equivalence Theorem was used to calculate the bistatic RCS for moving targets in the high frequency region. Some computing examples are given to verify the validity of the method. Excellent agreement with the measured data indicates that the method has practical engineering value.展开更多
Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving tar...Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.展开更多
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission...This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.展开更多
AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter ...AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter on the detecting performance is analyzed. By simulating different background clutter and noise, the performances of the phase threshold and dual-threshold methods are discussed in detail, and then the adaptive-threshold method is proposed which can greatly improve the detection performance.展开更多
The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but ...The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but it needs much time.The frequency-domain simulator not only increases the efficiency but also considers the trajectory deviations of the radar.In addition,the raw signal of the extended scene included static and moving targets can be generated by some frequency-domain simulators.However,the existing simulators concentrate on the raw signal simulation of the static extended scene and moving targets at uniform speed mostly.As for the issue,the two-dimensional signal spectrum of moving targets with constant acceleration can be derived accurately based on the geometric model of a side-looking SAR and reversion of series.And a frequency-domain algorithm for SAR echo signal simulation is presented based on the two-dimensional signal spectrum.The raw data generated with proposed method is verified by several simulation experiments.In addition to reveal the efficiency of the presented frequency-domain SAR scene simulator,the computational complexity of the proposed method is compared with the time-domain approach using the complex multiplication.Numerical results demonstrate that the present method can reduce the computational time significantly without accuracy loss while simulating SAR raw data.展开更多
Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,po...Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.展开更多
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c...Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.展开更多
The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier...The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier work.展开更多
Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small com...Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.展开更多
The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from ...The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.展开更多
Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooper...Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.展开更多
Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the li...Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the proces...Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.展开更多
This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi...This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.展开更多
The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called M...The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.展开更多
As an emerging network paradigm,the software-defined network(SDN)finds extensive application in areas such as smart grids,the Internet of Things(IoT),and edge computing.The forwarding layer in software-defined network...As an emerging network paradigm,the software-defined network(SDN)finds extensive application in areas such as smart grids,the Internet of Things(IoT),and edge computing.The forwarding layer in software-defined networks is susceptible to eavesdropping attacks.Route hopping is amoving target defense(MTD)technology that is frequently employed to resist eavesdropping attacks.In the traditional route hopping technology,both request and reply packets use the same hopping path.If an eavesdropping attacker monitors the nodes along this path,the risk of 100%data leakage becomes substantial.In this paper,we present an effective route hopping approach,called two-day different path(TDP),that turns communication paths into untraceable moving targets.This technology minimizes the probability of data leakage by transmitting request data and reply data through different paths.Firstly,a brief introduction to the network model and attack model involved in this paper is given.Secondly,the algorithm and processingmethod of the TDP are proposed.Thirdly,the paper proposes three differentmetrics tomeasure the effectiveness of the proposed approach.Finally,theoretical analysis and simulation results show that the TDP can effectively reduce the percentage of data exposure,decrease eavesdropping attack success probability,and improve the unpredictability of the path.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microw...To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.展开更多
基金F oundation of National Key Laboratory of Electrom agnetic Environmental Research(0 0 js67.1.1.hk0 10 1)
文摘Graphical Electromagnetic Computing (GRECO) is recognized as one of the most valuable methods of the RCS (Radar Cross Section) computation for the high frequency region. The method of GRECO and Monostatic bistatic Equivalence Theorem was used to calculate the bistatic RCS for moving targets in the high frequency region. Some computing examples are given to verify the validity of the method. Excellent agreement with the measured data indicates that the method has practical engineering value.
基金Project supported by NSFC(10571135)Doctoral Program Foundation of the Ministry of Education of China(20050240771)Funds of the Science and Technology Committee of Shanghai(03JC14027)
文摘In this article, two uniqueness theorems of meromorphic mappings on moving targets with truncated multiplicities are proved.
文摘Based on pattern recognition theory and neural network technology, moving objects automatic detection and classification method integrating advanced wavelet analysis are discussed in detail. An algorithm of moving targets pattern recognition on the combination of inter-frame difference and wavelet neural network is presented. The experimental results indicate that the designed BP wavelet network using this algorithm can recognize and classify moving targets rapidly and effectively.
基金supported by the National Natural Science Foundation of China(7140104871671059)the National Natural Science Funds of China for Innovative Research Groups(71521001)
文摘This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.
文摘AT-InSAR(Along Track Interferometric SAR) is a technique to detect slow-moving targets. However, the detection performance is greatly influenced by noise and clutter. In this paper, the influence of noise and clutter on the detecting performance is analyzed. By simulating different background clutter and noise, the performances of the phase threshold and dual-threshold methods are discussed in detail, and then the adaptive-threshold method is proposed which can greatly improve the detection performance.
基金The work was supported by the Natural Science Foundation of Shandong Province,China.(Grant No.ZR2017BF032)。
文摘The Synthetic Aperture Radar(SAR)raw data generator is required to the evaluation of focusing algorithms,moving target analysis,and hardware design.The time-domain SAR simulator can generate the accurate raw data but it needs much time.The frequency-domain simulator not only increases the efficiency but also considers the trajectory deviations of the radar.In addition,the raw signal of the extended scene included static and moving targets can be generated by some frequency-domain simulators.However,the existing simulators concentrate on the raw signal simulation of the static extended scene and moving targets at uniform speed mostly.As for the issue,the two-dimensional signal spectrum of moving targets with constant acceleration can be derived accurately based on the geometric model of a side-looking SAR and reversion of series.And a frequency-domain algorithm for SAR echo signal simulation is presented based on the two-dimensional signal spectrum.The raw data generated with proposed method is verified by several simulation experiments.In addition to reveal the efficiency of the presented frequency-domain SAR scene simulator,the computational complexity of the proposed method is compared with the time-domain approach using the complex multiplication.Numerical results demonstrate that the present method can reduce the computational time significantly without accuracy loss while simulating SAR raw data.
基金funded by the National Natural Science Foundation of China(Grant No.U19A2072)the Provincial Department of Education Postgraduate Scientific Research Innovation Project of Hunan Province of China(Grant No.QL20210007)the Ministerial Level Postgraduate Funding Project of China(Grant No.JY2021A007).
文摘Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%.
基金funded by the National Natural Science Foundation of China,grant number 42074176,U1939204。
文摘Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios.
基金the National Natural Science Foundation of China(Nos.10971156,11271291)
文摘The authors prove some uniqueness theorems for meromorphic mappings in several complex variables into the complex projective space PN(C)with two families of moving targets,and the results obtained improve some earlier work.
基金supported by the National Natural Science Foundation of China (No. 61271343)the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110012)the 2014 Innovation of Science and Technology Program of China Aerospace Science and Technology Corporation
文摘Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.
基金supported by Yulin Science and Technology Association Youth Talent Promotion Program(Grant No.20200212).
文摘The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.
基金supported by the National Natural Science Foundation of China(62101014)the National Key Laboratory of Science and Technology on Space Microwave(6142411203307).
文摘Global Navigation Satellite System(GNSS)-based passive radar(GBPR)has been widely used in remote sensing applications.However,for moving target detection(MTD),the quadratic phase error(QPE)introduced by the non-cooperative target motion is usually difficult to be compensated,as the low power level of the GBPR echo signal renders the estimation of the Doppler rate less effective.Consequently,the moving target in GBPR image is usually defocused,which aggravates the difficulty of target detection even further.In this paper,a spawning particle filter(SPF)is proposed for defocused MTD.Firstly,the measurement model and the likelihood ratio function(LRF)of the defocused point-like target image are deduced.Then,a spawning particle set is generated for subsequent target detection,with reference to traditional particles in particle filter(PF)as their parent.After that,based on the PF estimator,the SPF algorithm and its sequential Monte Carlo(SMC)implementation are proposed with a novel amplitude estimation method to decrease the target state dimension.Finally,the effectiveness of the proposed SPF is demonstrated by numerical simulations and pre-liminary experimental results,showing that the target range and Doppler can be estimated accurately.
文摘Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
基金Supported by the National Natural Science Foundation of China (No. 61102110)Natural Science Foundation of Hebei Province (No. F2010001285, F2012203180)
文摘Compared with the side-looking Synthetic Aperture Radar (SAR), the flexible beampointing of squint SAR makes great application value. This paper derives the image signature of the ground moving target after the processing of Range-Doppler (RD) algorithm, the SAR signatures of ground moving targets are analyzed, including the geometry correction, the offsets and defocusing in both range and azimuth direction. Finally, computer simulation results validate its effectiveness. The research results are especially significant for moving targets detection and parameters estimation in squint mode SAR.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312,61922037,61873115,and 61803348in part by the National Major Scientific Instruments Development Project under Grant 61927807+6 种基金in part by the State Key Laboratory of Deep Buried Target Damage under Grant No.DXMBJJ2019-02in part by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant 2020L0266in part by the Shanxi Province Science Foundation for Youths under Grant No.201701D221123in part by the Youth Academic North University of China under Grant No.QX201803in part by the Program for the Innovative Talents of Higher Education Institutions of Shanxiin part by the Shanxi“1331Project”Key Subjects Construction under Grant 1331KSCin part by the Supported by Shanxi Province Science Foundation for Excellent Youths。
文摘This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol.
基金supported by the National Key Research and Development Program of China(No.2016YFB0800601)the Key Program of NSFC-Tongyong Union Foundation(No.U1636209)+1 种基金the National Natural Science Foundation of China(61602358)the Key Research and Development Programs of Shaanxi(No.2019ZDLGY13-04,No.2019ZDLGY13-07)。
文摘The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.
基金the Natural Science Foundation of Guangdong Province under Grant Number 2021A1515011910by the Shenzhen Science and Technology Program under Grant No.KQTD20190929172704911。
文摘As an emerging network paradigm,the software-defined network(SDN)finds extensive application in areas such as smart grids,the Internet of Things(IoT),and edge computing.The forwarding layer in software-defined networks is susceptible to eavesdropping attacks.Route hopping is amoving target defense(MTD)technology that is frequently employed to resist eavesdropping attacks.In the traditional route hopping technology,both request and reply packets use the same hopping path.If an eavesdropping attacker monitors the nodes along this path,the risk of 100%data leakage becomes substantial.In this paper,we present an effective route hopping approach,called two-day different path(TDP),that turns communication paths into untraceable moving targets.This technology minimizes the probability of data leakage by transmitting request data and reply data through different paths.Firstly,a brief introduction to the network model and attack model involved in this paper is given.Secondly,the algorithm and processingmethod of the TDP are proposed.Thirdly,the paper proposes three differentmetrics tomeasure the effectiveness of the proposed approach.Finally,theoretical analysis and simulation results show that the TDP can effectively reduce the percentage of data exposure,decrease eavesdropping attack success probability,and improve the unpredictability of the path.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
文摘To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.