An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for n...An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for non-erodible matrices with perfect sink condition. The formulas of the moving boundary and the fractional drug release were given. The moving boundary and the fractional drug release have been calculated at various drug loading levels, mid the calculated results were in good agreement with those of experiments. The comparison of the moving boundary in spherical, cylinder, planar matrices has been completed. An approximate formula for estimating the available release time was presented. These results are useful for the clinic experiments. This investigation provides a new theoretical tool for studying the diffusion release of drug from a cylinder polymeric matrix and designing the controlled released drug.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (B...The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method(CVBEFM)for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers.To regularize...The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method(CVBEFM)for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers.To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative,a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures.To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables,a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure.The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers,even for extremely large wavenumbers such as k=10000.展开更多
In the present paper we investigate existence and uniqueness generalized solution for initial boundary value problem of synoptic flow equation with discontinuous boundary conditions. We consider Rothe-Galerkin method ...In the present paper we investigate existence and uniqueness generalized solution for initial boundary value problem of synoptic flow equation with discontinuous boundary conditions. We consider Rothe-Galerkin method for given problem and reduce numerical calculations.展开更多
In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed...In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed one. The steady-state approximation was also given to show the properties of the diffusion process.展开更多
文摘An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for non-erodible matrices with perfect sink condition. The formulas of the moving boundary and the fractional drug release were given. The moving boundary and the fractional drug release have been calculated at various drug loading levels, mid the calculated results were in good agreement with those of experiments. The comparison of the moving boundary in spherical, cylinder, planar matrices has been completed. An approximate formula for estimating the available release time was presented. These results are useful for the clinic experiments. This investigation provides a new theoretical tool for studying the diffusion release of drug from a cylinder polymeric matrix and designing the controlled released drug.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10871124)Innovation Program of Shanghai Municipal Education Commission (Grant No 09ZZ99)Shanghai Leading Academic Discipline Project (Grant No J50103)
文摘The interpolating moving least-squares (IMLS) method is discussed first in this paper. And the formulae of the IMLS method obtained by Lancaster are revised. Then on the basis of the boundary element-free method (BEFM), combining the boundary integral equation (BIE) method with the IMLS method, the improved boundary element-free method (IBEFM) for two-dimensional potential problems is presented, and the corresponding formulae of the IBEFM are obtained. In the BEFM, boundary conditions are applied directly, but the shape function in the MLS does not satisfy the property of the Kronecker ~ function. This is a problem of the BEFM, and must be solved theoretically. In the IMLS method, when the shape function satisfies the property of the Kronecker 5 function, then the boundary conditions, in the meshless method based on the IMLS method, can be applied directly. Then the IBEFM, based on the IMLS method, is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied directly and easily, thus it gives a greater computational precision. Some numerical examples are presented to demonstrate the method.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
基金Project supported by the National Natural Science Foundation of China(No.11971085)the Innovation Research Group Project in Universities of Chongqing of China(No.CXQT19018)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission of China(No.KJZD-M201800501)and the Science and Technology Research Program of Chongqing University of Education of China(No.KY201927C)。
文摘The Burton-Miller boundary integral formulation is solved by a complex variable boundary element-free method(CVBEFM)for the boundary-only meshless analysis of acoustic problems with arbitrary wavenumbers.To regularize both strongly singular and hypersingular integrals and to avoid the computation of the solid angle and its normal derivative,a weakly singular Burton-Miller formulation is derived by considering the normal derivative of the solid angle and adopting the singularity subtraction procedures.To facilitate the implementation of the CVBEFM and the approximation of gradients of the boundary variables,a stabilized complex variable moving least-square approximation is selected in the meshless discretization procedure.The results show the accuracy and efficiency of the present CVBEFM and reveal that the method can produce satisfactory results for all wavenumbers,even for extremely large wavenumbers such as k=10000.
文摘In the present paper we investigate existence and uniqueness generalized solution for initial boundary value problem of synoptic flow equation with discontinuous boundary conditions. We consider Rothe-Galerkin method for given problem and reduce numerical calculations.
文摘In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed one. The steady-state approximation was also given to show the properties of the diffusion process.