In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of...In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.展开更多
A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta ...A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the materi...This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.展开更多
In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height ap...In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.展开更多
Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection ope...Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.展开更多
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
One of the central issues in solving differential equations by numerical methods is the issue of approximation. The standard way of approximating differential equations by numerical methods (particularly difference me...One of the central issues in solving differential equations by numerical methods is the issue of approximation. The standard way of approximating differential equations by numerical methods (particularly difference methods) is to question the degree of approximation in the form O(h<sup>p</sup>). Here h is the grid step. In this case we have an implicit approximation. Based on the difference equation approximating the differential equation, the order of approximation is obtained using the Taylor series. However, it is possible to calculate the approximation error at nodal points based on the method of moving nodes. The method of moving nodes allows obtaining an approximate analytical expression. On the basis of the approximate form, it is possible to calculate the approximation error. The analytical form of the approximation makes it possible to efficiently calculate this error. On the other hand, the property of this error allows the construction of new improved circuits. In addition, based on these types of errors, you can create a differential analog of the difference equation that gives an exact approximation.展开更多
An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for n...An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for non-erodible matrices with perfect sink condition. The formulas of the moving boundary and the fractional drug release were given. The moving boundary and the fractional drug release have been calculated at various drug loading levels, mid the calculated results were in good agreement with those of experiments. The comparison of the moving boundary in spherical, cylinder, planar matrices has been completed. An approximate formula for estimating the available release time was presented. These results are useful for the clinic experiments. This investigation provides a new theoretical tool for studying the diffusion release of drug from a cylinder polymeric matrix and designing the controlled released drug.展开更多
The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of ...The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.展开更多
In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed...In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed one. The steady-state approximation was also given to show the properties of the diffusion process.展开更多
The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high...The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives.展开更多
We address the problem of convergence of approximations obtained from two versions of the piecewise power-law representations arisen in Systems Biology. The most important cases of mean-square and uniform convergence ...We address the problem of convergence of approximations obtained from two versions of the piecewise power-law representations arisen in Systems Biology. The most important cases of mean-square and uniform convergence are studied in detail. Advantages and drawbacks of the representations as well as properties of both kinds of convergence are discussed. Numerical approximation algorithms related to piecewise power-law representations are described in Appendix.展开更多
In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Ant...In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.展开更多
文摘In this article, some properties of matrices of moving least-squares approximation have been proven. The used technique is based on known inequalities for singular-values of matrices. Some inequalities for the norm of coefficients-vector of the linear approximation have been proven.
基金Project supported by the National Natural Science Foundation of China(No.11176035)
文摘A global interpolating meshless shape function based on the generalized moving least-square (GMLS) is formulated by the transformation technique. Both the shape function and its derivatives meet the Kronecker delta function property. With the interpolating GMLS (IGMLS) shape function, an improved element-free Galerkin (EFG) method is proposed for the structural dynamic analysis. Compared with the conven- tional EFG method, the obvious advantage of the proposed method is that the essential boundary conditions including both displacements and derivatives can be imposed by the straightforward way. Meanwhile, it can greatly improve the ill-condition feature of the standard GMLS approximation, and provide good accuracy at low cost. The dynamic analyses of the Euler beam and Kirchhoff plate are performed to demonstrate the feasi- bility and effectiveness of the improved method. The comparison between the numerical results of the conventional method and the improved method shows that the proposed method has better stability, higher accuracy, and less time consumption.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘This paper presents a new approach to the structural topology optimization of continuum structures. Material-point independent variables are presented to illustrate the existence condition,or inexistence of the material points and their vicinity instead of elements or nodes in popular topology optimization methods. Topological variables field is constructed by moving least square approximation which is used as a shape function in the meshless method. Combined with finite element analyses,not only checkerboard patterns and mesh-dependence phenomena are overcome by this continuous and smooth topological variables field,but also the locations and numbers of topological variables can be arbitrary. Parameters including the number of quadrature points,scaling parameter,weight function and so on upon optimum topological configurations are discussed. Two classic topology optimization problems are solved successfully by the proposed method. The method is found robust and no numerical instabilities are found with proper parameters.
文摘In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.
基金supported by the National Natural Science Foundation of China(Grant No.11101454)the Natural Science Foundation of Chongqing CSTC,China(Grant No.cstc2014jcyjA00005)the Program of Innovation Team Project in University of Chongqing City,China(Grant No.KJTD201308)
文摘Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
文摘One of the central issues in solving differential equations by numerical methods is the issue of approximation. The standard way of approximating differential equations by numerical methods (particularly difference methods) is to question the degree of approximation in the form O(h<sup>p</sup>). Here h is the grid step. In this case we have an implicit approximation. Based on the difference equation approximating the differential equation, the order of approximation is obtained using the Taylor series. However, it is possible to calculate the approximation error at nodal points based on the method of moving nodes. The method of moving nodes allows obtaining an approximate analytical expression. On the basis of the approximate form, it is possible to calculate the approximation error. The analytical form of the approximation makes it possible to efficiently calculate this error. On the other hand, the property of this error allows the construction of new improved circuits. In addition, based on these types of errors, you can create a differential analog of the difference equation that gives an exact approximation.
文摘An approximate analytical solution of moving boundary problem for diffusion release of drug from a cylinder polymeric matrix was obtained by use of refined integral method. The release kinetics has been analyzed for non-erodible matrices with perfect sink condition. The formulas of the moving boundary and the fractional drug release were given. The moving boundary and the fractional drug release have been calculated at various drug loading levels, mid the calculated results were in good agreement with those of experiments. The comparison of the moving boundary in spherical, cylinder, planar matrices has been completed. An approximate formula for estimating the available release time was presented. These results are useful for the clinic experiments. This investigation provides a new theoretical tool for studying the diffusion release of drug from a cylinder polymeric matrix and designing the controlled released drug.
基金Sponsored by the Ministerial Level Advanced Research Foundation (010896367)
文摘The independent continuous mapping(ICM) method is integrated into element free Galerkin method and a new implementation of topology optimization for continuum structure is presented.To facilitate the enforcement of the essential boundary condition and derivative of various sensitivities,a singular weight function in element free Galerkin method is introduced.Material point variable is defined to illustrate the condition of material point and its vicinity instead of element or node.The topological variables field is constructed by moving least square approximation which inherits the continuity and smoothness of the weight function.Due to reciprocal relationships between the topological variables and design variables,various structural responses sensitivities are derived according to the method for calculating the partial derivatives of compound functions.Numerical examples indicate that checkerboard pattern and mesh-dependence phenomena are overcome without additional restriction methods.
文摘In this paper, we study a space-fractional anomalous diffusion in a variable area. The moving boundary is assumed moving with constant speed. The numerical scheme was present by changing the moving boundary to a fixed one. The steady-state approximation was also given to show the properties of the diffusion process.
文摘The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives.
文摘We address the problem of convergence of approximations obtained from two versions of the piecewise power-law representations arisen in Systems Biology. The most important cases of mean-square and uniform convergence are studied in detail. Advantages and drawbacks of the representations as well as properties of both kinds of convergence are discussed. Numerical approximation algorithms related to piecewise power-law representations are described in Appendix.
文摘In this paper,the Hermitian reflexive(Anti-Hermitian reflexive)least-squares so-lutions of matrix equations(AX = B,XC = D)are considered.With special properties of partitioned matrices and Hermitian reflexive(Anti-Hermitian reflexive)matrices,the general expression of the solution is obtained.Moreover,the related optimal approximation problem to a given matrix over the solution set is considered.