期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Large deformation simulations of geomaterials using moving particle semi-implicit method 被引量:1
1
作者 Shintaro Nohara Hiroshi Suenaga Kunihiko Nakamura 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1122-1132,共11页
Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian g... Numerical simulation tools are required to describe large deformations of geomaterials for evaluating the risk of geo-disasters. This study focused on moving particle semi-implicit(MPS) method, which is a Lagrangian gridless particle method, and investigated its performance and stability to simulate large deformation of geomaterials. A calculation method was developed using geomaterials modeled as Bingham fluids to improve the original MPS method and enhance its stability. Two numerical tests showed that results from the improved MPS method was in good agreement with the theoretical value.Furthermore, numerical simulations were calibrated by laboratory experiments. It showed that the simulation results matched well with the experimentally observed free-surface configurations for flowing sand. In addition, the model could generally predict the time-history of the impact force. The MPS method could be a useful tool to evaluate large deformation of geomaterials. 展开更多
关键词 particle method moving particle semi-implicit(MPS) method Large deformation analysis GEOMATERIALS Bingham model
下载PDF
On the limitations of linear beams for the problems of moving mass-beam interaction using a meshfree method
2
作者 Keivan Kiani Ali Nikkhoo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期164-179,共16页
This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of ... This paper deals with the capabilities of linear and nonlinear beam theories in predicting the dynamic response of an elastically supported thin beam traversed by a moving mass. To this end, the discrete equations of motion are developed based on Lagrange's equations via reproducing kernel particle method (RKPM). For a particular case of a simply supported beam, Galerkin method is also employed to verify the results obtained by RKPM, and a reasonably good agreement is achieved. Variations of the maximum dynamic deflection and bending moment associated with the linear and nonlinear beam theories are investigated in terms of moving mass weight and velocity for various beam boundary conditions. It is demonstrated that for majority of the moving mass velocities, the differences between the results of linear and nonlinear analyses become remarkable as the moving mass weight increases, particularly for high levels of moving mass velocity. Except for the cantilever beam, the nonlinear beam theory predicts higher possibility of moving mass separation from the base beam compared to the linear one. Furthermore, the accuracy levels of the linear beam theory are determined for thin beams under large deflections and small rotations as a function of moving mass weight and velocity in various boundary conditions. 展开更多
关键词 Nonlinear beam theory moving mass-beam in- teraction Euler-Bernoulli beam theory - Reproducing kernel particle method (RKPM) Galerkin method (GM)
下载PDF
Numerical Simulation of Sloshing with Large Deforming Free Surface by MPS-LES Method 被引量:4
3
作者 潘徐杰 张怀新 孙学尧 《China Ocean Engineering》 SCIE EI 2012年第4期653-668,共16页
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering application... Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations. 展开更多
关键词 liquid sloshing large deforming free surface MESHLESS moving particle semi-implicit method (MPS) largeeddy simulation (LES)
下载PDF
Numerical Simulation of Sloshing Using the MPS-FSI Method with Large Eddy Simulation 被引量:1
4
作者 YANG Chao ZHANG Huai-xin +1 位作者 SU Hui-lin SHEN Zhong-xiang 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期278-287,共10页
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large edd... A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation. 展开更多
关键词 moving particle semi-implicit method(MPS) fluid–structure interaction(FSI) large eddy simulation(LES) MESHLESS SLOSHING
下载PDF
Implementation of the moving particle semi-implicit method on GPU 被引量:2
5
作者 ZHU XiaoSong CHENG Liang +1 位作者 LU Lin TENG Bin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期523-532,共10页
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri... The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model. 展开更多
关键词 moving particle semi-implicit method (MPS) graphics processing units (GPU) compute unified device architecture (CUDA) neighbouring particle searching free surface flow
原文传递
Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method
6
作者 Hassan Ostad Soheil Mohammadi 《Particuology》 SCIE EI CAS CSCD 2009年第5期373-383,共11页
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda... In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries. 展开更多
关键词 CSPM Meshfree particle method Shock wave propagation and reflection moving boundaries Compressible fluids Velocity field smoothing stabilization
原文传递
Numerical simulation of liquid sloshing in a spherical tank by MPS method
7
作者 Cong-yi Huang Ji-fei Wang +1 位作者 Wei-wen Zhao De-cheng Wan 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第2期232-240,共9页
This paper investigates the sloshing phenomena in a spherical liquid tank using the moving particle semi-implicit(MPS)method,a crucial study in fluid dynamics.Distinct from previous research focused on rectangular or ... This paper investigates the sloshing phenomena in a spherical liquid tank using the moving particle semi-implicit(MPS)method,a crucial study in fluid dynamics.Distinct from previous research focused on rectangular or LNG tanks,this work explores the unique motion patterns inherent to spherical geometries.The accuracy of our in-house MPS solver MLParticle-SJTU is validated against experimental data and finite volume method(FVM).And the MPS method reveals a closer alignment with experimental outcomes,which suggests that MPS method is particularly effective for modeling complex,non-linear fluid behaviors.Then the fluid’s response to excitation at its natural frequency is simulated,showcasing vigorous sloshing and rotational motion.Detailed analyses of the fluid motion are conducted by drawing streamline diagrams,velocity vector diagrams,and vorticity maps.The fluid’s motion response is explored using both time-domain and frequency-domain curves of the fluid centroid,as well as the sloshing force. 展开更多
关键词 moving particle semi-implicit(MPS)method spherical tank liquid sloshing model experiment
原文传递
Comparative study of MPS method and level-set method for sloshing flows 被引量:28
8
作者 张雨新 万德成 HINO Takanori 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第4期577-585,共9页
This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set ... This paper presents a comparative study of a meshless level-set method in the simulation of sloshing flows. The numerical moving particle semi-implicit (MPS) method and a grid based schemes of the MPS and level-set methods are outlined and two violent sloshing cases are considered. The computed results are compared with the corresponding experimental data for validation. The impact pressure and the deformations of free surface induced by sloshing are comparatively analyzed, and are in good agreement with experimental ones. Results show that both the MPS and level-set methods are good tools for simulation of violent sloshing flows. However, the second pressure peaks as well as breaking and splashing of free surface by the MPS method are captured better than by the level-set method. 展开更多
关键词 moving particle semi-implicit (MPS) method level-set method liquid sloshing impact pressure free surface
原文传递
Hydroelastic responses of an elastic cylinder impacting on the free surface by MPS-FEM coupled method 被引量:4
9
作者 Congyi Huang Guanyu Zhang Decheng Wan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第11期67-78,共12页
In naval engineering and offshore industry,the fluid-structure interaction(FSI)problem is a very common problem,and water entry is a very representative one.The hydroelasticity effects due to slamming are of great int... In naval engineering and offshore industry,the fluid-structure interaction(FSI)problem is a very common problem,and water entry is a very representative one.The hydroelasticity effects due to slamming are of great interest.In this paper,the water entry problem is simulated by the moving particle semi-implicit&finite element method(MPS-FEM)coupled method.The MPS method is used for the fluid because it is very suitable for the violent free-surface flow.The structure domain is solved by the FEM method because of the maturity in solving structural motion and deformation.The water entry of a rigid cylinder is numerically studied first and the results show good agreements with previous published data.After that,variable analysis is conducted in the water entry simulation of an elastic cylinder,including the structural elasticity and impact velocity. 展开更多
关键词 moving particle semi-implicit method Finite element method Fluid-structure interaction Water entry MPSFSI solver
原文传递
CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU 被引量:7
10
作者 Feng-ze Xie Wei-wen Zhao De-cheng Wan 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第4期672-683,共12页
For violent sloshing,the flow field becomes complicated and 3-D effect is non-negligible.In addition to the excitation direction,the wave can also propagate perpendicular to the excitation direction.Due to the superpo... For violent sloshing,the flow field becomes complicated and 3-D effect is non-negligible.In addition to the excitation direction,the wave can also propagate perpendicular to the excitation direction.Due to the superposition of waves from different directions,the impact pressure imposed on the wall of the tank may increase.In this paper,our in-house solver MPSGPU-SJTU based on moving particle semi-implicit(MPS)method coupled with GPU techniques is employed for the liquid sloshing simulation,to study the factors leading to the 3-D effect.Firstly,a series of sloshing simulations are carried out to validate the reliability of present solver.Then,the sensitivity of 3-D effect against some parameters,such as excitation frequency,dimensions of the tank and filling ratio,is checked through numerical simulations.Time histories of pressure obtained by 2-D and 3-D simulations are compared to judge the occurrence of 3-D effect.It concludes that effects of those parameters are all significant. 展开更多
关键词 Liquid sloshing 3-D effect sensitive parameters moving particle semi-implicit(MPS)method MPSGPU-SJTU solver
原文传递
Numerical simulations of sloshing waves in vertically excited square tank by improved MPS method 被引量:3
11
作者 Guan-yu Zhang Wei-wen Zhao De-cheng Wan 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第1期76-84,共9页
Faraday wave is a phenomenon of sloshing due to a heave motion of a partially filled tank,which is also called parametric instability or parametric resonance.In the present paper,the phenomenon of faraday wave in a pu... Faraday wave is a phenomenon of sloshing due to a heave motion of a partially filled tank,which is also called parametric instability or parametric resonance.In the present paper,the phenomenon of faraday wave in a pure heave excited square tank is numerically simulated through the moving particle semi-implicit(MPS)method.The surface tension effect and a new Dirichlet boundary condition for the pressure Poisson equation are considered to avert unphysical fragmentation and clustering of particles in splash simulation.In the numerical simulation,the evolution of wave motion,and the non-linearity together with breaking phenomenon of faraday wave can be observed.The agreement is good in general,both amplitude and phase.Besides,the parameter studies including the excitation frequency and the forcing amplitude are carried out to analyses the mechanism of resonances response. 展开更多
关键词 Liquid sloshing faraday wave moving particle semi-implicit(MPS)method surface tension MLparticle-SJTU solver
原文传递
Numerical simulations of faraday waves in cylindrical and hexagonal tanks based on MPS method 被引量:1
12
作者 Cong-yi Huang Wei-wen Zhao De-cheng Wan 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第2期278-286,共9页
When a partially loaded liquid container vibrates along the vertical direction,the liquid inside will oscillate regularly,which is called Faraday wave.In some cases,the wave form of the Faraday wave is stable and smoo... When a partially loaded liquid container vibrates along the vertical direction,the liquid inside will oscillate regularly,which is called Faraday wave.In some cases,the wave form of the Faraday wave is stable and smooth,and sometimes there is violent wave breaking and liquid splashing.In this paper,the Faraday waves inside the cylindrical tank and the hexagonal tanks are simulated by the in-house solver MLParticle-SJTU base on the moving particle semi-implicit(MPS)method.The surface tension model is used to better model the free surfaces with large deformations.Phenomena such as wave breaking and liquid splashing are well captured and simulated.The results show that the waveforms are significantly different at different excitation frequencies.And the tank shape also has an obvious effect on the waveform. 展开更多
关键词 Faraday wave moving particle semi-implicit(MPS)method wave breaking liquid splash surface tension
原文传递
Investigations on lubrication characteristics of high-speed electric multiple unit gearbox by oil volume adjusting device 被引量:1
13
作者 Shuai SHAO Kai-lin ZHANG +2 位作者 Yuan YAO Yi LIU Jun GU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期1013-1026,共14页
In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed... In this paper,a numerical simulation model of the flow field in a gearbox with an oil volume adjusting device is established for the first time to study its influence on the lubrication characteristics of a high-speed electric multiple unit(EMU)gearbox.The moving particle semi-implicit(MPS)method is used to numerically simulate the internal flow field of the gearbox of the high-speed EMU under working conditions.The effects of the velocity of the high-speed EMU,the immersion depth,and the oil sump temperature on the power loss of the gears and the lubricant quantity of each bearing are studied and provide an effective tool for the quantitative evaluation of the lubrication characteristics of the gearbox.The lubrication characteristics of the gearbox under different working conditions are studied when the oil volume adjusting device is closed and opened.The results show that the oil volume adjusting device mainly changes the amount of lubricant stirred by the output gear by changing the flow rate of lubricant from the cavity pinion(Cavity P)to the cavity gear(Cavity G),and thus affects the power loss of gears and the lubricant quantity of each bearing. 展开更多
关键词 High-speed electric multiple unit(EMU) Splash lubrication Mesh-free moving particle semi-implicit(MPS)method Bearing lubrication Churning power loss Oil volume adjusting device
原文传递
Numerical simulation of the Rayleigh-Taylor instability using the MPS method
14
作者 CHENG HuiFang JIANG ShengYao +1 位作者 BO HanLiang DUAN RiQiang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第10期2953-2959,共7页
In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this pape... In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this paper are to investigate preliminarily the effect of viscosity and finite size domain on the evolution of the RT instability.The simulation results demonstrate that(1) the mushroom-like vortex motions are formed in late time due to fluid viscosity,which give rise to the secondary shear flow instability,(2) the finite thickness of the fluid layer limits the development of the RT instability.The above results are consistent with the experiments and theoretical analyses.Meanwhile,the linear growth rate of the RT instability obtained from the numerical simulation is also in agreement with theoretical analyses.And the nonlinear threshold from the simulation result is comparable with the theoretical estimate.Two stages of the nonlinear evolution of the RT instability are revealed in the numerical simulation,nonlinear saturation and turbulent mixing. 展开更多
关键词 the moving particle semi-implicit method the Rayleigh-Taylor instability numerical simulation
原文传递
Improvement of solidification model and analysis of 3D channel blockage with MPS method
15
作者 Reo KAWAKAMI Xin LI +3 位作者 Guangtao DUAN Akifumi YAMAJI Isamu SATO Tohru SUZUKI 《Frontiers in Energy》 SCIE CSCD 2021年第4期946-958,共13页
In a severe accident of a nuclear power reactor,coolant channel blockage by solidified molten core debris may significantly influence the core degradations that follow.The moving particle semi-implicit(MPS)method is o... In a severe accident of a nuclear power reactor,coolant channel blockage by solidified molten core debris may significantly influence the core degradations that follow.The moving particle semi-implicit(MPS)method is one of the Lagrangian-based particle methods for analyzing incompressible flows.In the study described in this paper,a novel solidification model for analyzing melt flowing channel blockage with the MPS method has been developed,which is suitable to attain a sufficient numerical accuracy with a reasonable calculation cost.The prompt velocity diffusion by viscosity is prioritized over the prompt velocity correction by the pressure term(for assuring incompressibility)within each time step over the“mushy zone”(between the solidus and liquidus temperature)for accurate modeling of solidification before fixing the coordinates of the completely solidified particles.To sustain the numerical accuracy and stability,the corrective matrix and particle shifting techniques have been applied to correct the discretization errors from irregular particle arrangements and to recover the regular particle arrangements,respectively.To validate the newly developed algorithm,2-D benchmark analyses are conducted for steady-state freezing of the water in a laminar flow between two parallel plates.Furthermore,3-D channel blockage analyses of a boiling water reactor(BWR)fuel support piece have been performed.The results show that a partial channel blockage develops from the vicinity of the speed limiter,which does not fully develop into a complete channel blockage,but still diverts the incoming melt flow that follows to the orifice region. 展开更多
关键词 boiling water reactor(BWR) severe accident channel blockage moving particle semi-implicit(MPS)method solidification*
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部