期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis 被引量:1
1
作者 Shuyi Zhao Delai Huang Jinrong Peng 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第11期955-960,共6页
The nucleolus,as the‘nucleus of the nucleus’,is a prominent subcellular organelle in a eukaryocyte.The nucleolus serves as the centre for ribosome biogenesis,as well as an important site for cell-cycle regulation,ce... The nucleolus,as the‘nucleus of the nucleus’,is a prominent subcellular organelle in a eukaryocyte.The nucleolus serves as the centre for ribosome biogenesis,as well as an important site for cell-cycle regulation,cellular senescence,and stress response.The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses.Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans,namely the Def-CAPN3 pathway,which is essential to ribosome production and cell-cycle progression,by controlling the turnover of multiple substrates(e.g.,ribosomal small-subunit[SSU]processome component Mpp10,transcription factor p53,check-point proteins Chk1 and Wee1).This pathway relies on the Ca2þ-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway.CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus,where it proteolyzes its substrates which harbor a CAPN3 recognition-motif.Def depletion leads to the exclusion of CAPN3 and accumulation of p53,Wee1,Chk1,and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality.Here,we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis. 展开更多
关键词 NUCLEOLUS Protein degradation Def CAPN3 P53 CHK1 Wee1 mpp10 Sas10
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部