本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定...本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定位(Visible Light Position,VLP)算法获得定位数据,同时估计信道状态信息(Channel State Information,CSI)并上传给发射端进行定向通信.该系统的发射端基于空移键控(Space Shift Keying,SSK)的室内可见光通信(Visible Light Communication,VLC)技术实现系统的通信功能.另外,本方案可以完全避免通信与定位子系统之间的干扰.同时,通过推导定位误差的克拉美罗下界(Cramér-Rao Lower Bound,CRLB)和SSK-VLC的通信可达速率来评估本文提出的VLPC系统的性能.仿真结果验证了本文所提方案的有效性.展开更多
为了解决部分均匀环境中训练数据不足时的子空间信号检测难题,采用贝叶斯理论,将噪声协方差矩阵建模为逆威沙特分布,并采用广义似然比准则(generalized likelihood ratio test,GLRT)、Rao准则和Wald准则设计自适应检测器,结果表明3种准...为了解决部分均匀环境中训练数据不足时的子空间信号检测难题,采用贝叶斯理论,将噪声协方差矩阵建模为逆威沙特分布,并采用广义似然比准则(generalized likelihood ratio test,GLRT)、Rao准则和Wald准则设计自适应检测器,结果表明3种准则得到相同的结果。基于仿真及实测数据验证了所提检测器的有效性,并得出了影响检测性能的关键物理量。展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术...近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。展开更多
文摘本文设计了一个多输入单输出(Multiple-Input Single-Output,MISO)的三维室内可见光定位通信一体化(Visible Light Position and Communication,VLPC)系统,该系统在接收端基于接收信号强度(Received Signal Strength,RSS)的三维可见光定位(Visible Light Position,VLP)算法获得定位数据,同时估计信道状态信息(Channel State Information,CSI)并上传给发射端进行定向通信.该系统的发射端基于空移键控(Space Shift Keying,SSK)的室内可见光通信(Visible Light Communication,VLC)技术实现系统的通信功能.另外,本方案可以完全避免通信与定位子系统之间的干扰.同时,通过推导定位误差的克拉美罗下界(Cramér-Rao Lower Bound,CRLB)和SSK-VLC的通信可达速率来评估本文提出的VLPC系统的性能.仿真结果验证了本文所提方案的有效性.
文摘为了解决部分均匀环境中训练数据不足时的子空间信号检测难题,采用贝叶斯理论,将噪声协方差矩阵建模为逆威沙特分布,并采用广义似然比准则(generalized likelihood ratio test,GLRT)、Rao准则和Wald准则设计自适应检测器,结果表明3种准则得到相同的结果。基于仿真及实测数据验证了所提检测器的有效性,并得出了影响检测性能的关键物理量。
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
文摘近年来,利用稀疏阵列估计信源的波达方向(Direction of Arrival,DOA)已成为阵列信号处理领域的研究热点问题之一。相较于传统的均匀线阵,稀疏阵列凭借其大孔径、高自由度、低互耦率、低冗余度、低开销和布阵灵活等优良特性,吸引了学术界广泛关注和系统性研究。同时,为充分发挥稀疏阵列的巨大优势,学者们已经从不同角度开发了一系列与之相适应的DOA估计算法,以进一步提高可分辨信源的数量和角度估计精度。本文在构建稀疏阵列信号模型和整理稀疏阵列相关术语的基础上,详细介绍了稀疏阵列结构设计及DOA估计算法的发展历程和代表性研究成果。在稀疏阵列结构设计方面,围绕自由度、互耦率和冗余度等核心指标,深入剖析了各类稀疏阵列结构的设计思想,并着重描述了嵌套和互质两类结构性稀疏阵列的连续自由度和自由度特征;在稀疏阵列DOA估计方面,根据信号参量构造原理的不同,阐述了基于物理阵列处理和虚拟阵列处理的两种测向理论,并分析了各自方法的适用条件和性能优势。此外,本文还回顾了稀疏阵列DOA估计的克拉美罗界(Cramér-Rao bound,CRB),为评估不同阵列和算法的优劣提供了重要依据。最后,通过梳理现有研究成果中存在的不足,对未来研究方向进行了展望,力图为稀疏阵列DOA估计的工程应用提供理论依据和技术支撑。