plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tenso...plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.展开更多
At 19:33 p.m on September 27, 2003, an earthquake with M7.9 occurred in the Russia-Mongolia-China boundary Region. It was strongly felt in the Altay region of Xinjiang. The losses caused by the earthquake was 76 milli...At 19:33 p.m on September 27, 2003, an earthquake with M7.9 occurred in the Russia-Mongolia-China boundary Region. It was strongly felt in the Altay region of Xinjiang. The losses caused by the earthquake was 76 million yuan (RMB). Some information about the earthquake was outlined, including basic parameters, focal mechanism, evaluation of earthquake disaster losses and so on. The satellite remote sensing information worked initial analysis for deformation of ground and failure phenomenon.展开更多
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th...A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th,2008.Google Earth images of preand post-earthquakes show that 52194 co-seismic landslides were recognized and mapped,with a total landslides area of 1021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database,which includes area,length,and width of landslides,elevation of the scarp top and foot edge,and the top and bottom elevations of each located slope.Finally,the spatial distribution and the above attribute parameters of landslides were analyzed.The results show that the spatial distribution of the co-seismic landslides is extremely uneven.The landslides that mainly occur in a rectangular area(a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan)are obviously controlled by surface rupture,terrain,and peak ground acceleration.Meanwhile,a large number of small landslides(individual landslide area less than 10000 m2)contribute less to the total landslides area.The number of landslides larger than 10000 m2 accounts for 38.7%of the total number of co-seismic landslides,while the area of those landslides account for 88%of the total landslides area.The 52194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area,transport area,and accumulation area.However,based on the area-volume power-law relationship,the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.展开更多
The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal...The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal event by back-projecting the teleseismic P-wave energy recorded at the three regional networks in Alaska, Australia and Europe. The back-projection images of the three subarrays revealed that the Nepal earthquake propagated along the strike in a southeast direction over a distance of ~ 160–170 km with the duration of ~ 50–55 s. The rupture process was found to be a simple, unilateral event with a near constant velocity of 3.3 km/s.The beam power was mainly distributed in the geographic region just north of Kathmandu and the peak intensity for the source time function curve occurred at about 30 s. The earthquake was destructive due to its occurrence at shallow depth(~ 12–15 km) and the fact that the capital lies in a basin of soft sediment. Additionally, the resonance effect for the longer period waves that occurred in the Kathmandu valley led to destructive aggravation, impacting mainly the taller buildings.展开更多
The study of postseismic deformation is important for constraining the viscoelastic properties of the Earth and inverting the post-earthquake process.The levelling survey revealed that the area near Bei-chuan elevated...The study of postseismic deformation is important for constraining the viscoelastic properties of the Earth and inverting the post-earthquake process.The levelling survey revealed that the area near Bei-chuan elevated 5.3 cm about two years after the M_(W) 7.9 Wenchuan earthquake(05/12/2008),during which the area underwent significant downward movement.The GPS horizontal displacements showed a non-monotonic variation after the Wenchuan earthquake.In this study,a 3-D viscoelastic finite element model is employed to simulate the coseismic and postseismic deformation of the Wenchuan earthquake.The numerical simulations show that the lateral heterogeneity across the Longmenshan fault plays an important role in the postseismic displacements.The results reveal that the coseismic defor-mation is not sensitive to the horizontal heterogeneity,but the postseismic deformation is sensitive to it.The postseismic deformation of the horizontally heterogeneous model is generally consistent with the observations of all geodetic surveys,such as GPS,InSAR and levelling,but not for the horizontally homogenous model.We also find that the non-monotonous variation of the postseismic deformation of the Wenchuan earthquake could be explained by a viscoelastic relaxation model with lateral heterogeneous medium across the Longmenshan fault.展开更多
The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of ...The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of the SdS phases between the S and ScS phases,which requires that certain stringent conditions be satisfied with respect to an epicentral distance and earthquake depth. Therefore,this approach is only practical for investigating the presence and topography of velocity interfaces in certain local regions around the world. The Russia–Kazakhstan border region has been a ‘‘blind spot'' with respect to this detection method. The seismic network deployed in the northeastern margin of the Tibetan Plateau has recorded relatively clear SdS phases for the MS6.3 earthquake that occurred in Spain on April 11,2010,allowing this blind spot to be studied. This paper compares the observed waveforms and synthetics and uses the travel times of the relevant phases to obtain a D'' discontinuity depth between2,610 and 2,740 km in the examined area. This study provides the first results regarding the depth of the D'' layer discontinuity for this region and represents an important addition to the global studies of the D'' layer.展开更多
Fault-block structures of the Altay-Sayan folded area (ASFA) southeastern Siberia of Russia were used as the basis for creating a 3-D model. The surface structures were projected to depths by previous correlations b...Fault-block structures of the Altay-Sayan folded area (ASFA) southeastern Siberia of Russia were used as the basis for creating a 3-D model. The surface structures were projected to depths by previous correlations between long and deep faults, with all layers and deformation factors defined. The mean deformation factor (Ds) is 0.12 unit/km^3 in the upper layer, 0.012 unit/km^3 in the intermediate layer, and 0.007 unit/km^3 in the lower layer of the 3-D ASFA neotectonic model. Ds allows correlation of the three distinguished layers with theological bodies that differ in their potential for accumulating elastic energy. 3-D modeling can be used as a methodological approach to projections in seismic prone areas such as the Krasnoyarsk region, for earthquake-hazard monitoring.展开更多
基金The Specialized Funds for National Key Basic Study (G1998040704), the Dual Project of China Earthquake Admini-stration (9691309020301) and National Natural Science Foundation of China (46764010).
文摘plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of MS=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M0=0.97 × 1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the MS=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.
文摘At 19:33 p.m on September 27, 2003, an earthquake with M7.9 occurred in the Russia-Mongolia-China boundary Region. It was strongly felt in the Altay region of Xinjiang. The losses caused by the earthquake was 76 million yuan (RMB). Some information about the earthquake was outlined, including basic parameters, focal mechanism, evaluation of earthquake disaster losses and so on. The satellite remote sensing information worked initial analysis for deformation of ground and failure phenomenon.
基金jointly sponsored by FundamentalScientific Research Fund in the IEF,CEA(2019IEF0201,2015IES0102,2017IES0101)National Natural Science Foundation of China(41502204)+1 种基金Seismic Active Fault Exploration Project based on High-resolution Remote Sensing Interpretation Technology by Department of Earthquake Damage Defence,CEA(15230003)Earthquake Science and Technology Spark Program,CEA(XH18015)。
文摘A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th,2008.Google Earth images of preand post-earthquakes show that 52194 co-seismic landslides were recognized and mapped,with a total landslides area of 1021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database,which includes area,length,and width of landslides,elevation of the scarp top and foot edge,and the top and bottom elevations of each located slope.Finally,the spatial distribution and the above attribute parameters of landslides were analyzed.The results show that the spatial distribution of the co-seismic landslides is extremely uneven.The landslides that mainly occur in a rectangular area(a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan)are obviously controlled by surface rupture,terrain,and peak ground acceleration.Meanwhile,a large number of small landslides(individual landslide area less than 10000 m2)contribute less to the total landslides area.The number of landslides larger than 10000 m2 accounts for 38.7%of the total number of co-seismic landslides,while the area of those landslides account for 88%of the total landslides area.The 52194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area,transport area,and accumulation area.However,based on the area-volume power-law relationship,the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.
基金supported by the National Natural Science Foundation of China (No.41604049)
文摘The M7.9 Nepal earthquake of 25 April2015 had over 8, 500 fatalities and was the most destructive earthquake in Nepal since the Bihar-Nepal earthquake in 1934.In this study, we imaged the rupture process of this Nepal event by back-projecting the teleseismic P-wave energy recorded at the three regional networks in Alaska, Australia and Europe. The back-projection images of the three subarrays revealed that the Nepal earthquake propagated along the strike in a southeast direction over a distance of ~ 160–170 km with the duration of ~ 50–55 s. The rupture process was found to be a simple, unilateral event with a near constant velocity of 3.3 km/s.The beam power was mainly distributed in the geographic region just north of Kathmandu and the peak intensity for the source time function curve occurred at about 30 s. The earthquake was destructive due to its occurrence at shallow depth(~ 12–15 km) and the fact that the capital lies in a basin of soft sediment. Additionally, the resonance effect for the longer period waves that occurred in the Kathmandu valley led to destructive aggravation, impacting mainly the taller buildings.
基金This work is supported by the National Natural Science Foun-dation of China(42074105,41674096)Natural Science Foundation of Jiangsu Province(BK20131033)。
文摘The study of postseismic deformation is important for constraining the viscoelastic properties of the Earth and inverting the post-earthquake process.The levelling survey revealed that the area near Bei-chuan elevated 5.3 cm about two years after the M_(W) 7.9 Wenchuan earthquake(05/12/2008),during which the area underwent significant downward movement.The GPS horizontal displacements showed a non-monotonic variation after the Wenchuan earthquake.In this study,a 3-D viscoelastic finite element model is employed to simulate the coseismic and postseismic deformation of the Wenchuan earthquake.The numerical simulations show that the lateral heterogeneity across the Longmenshan fault plays an important role in the postseismic displacements.The results reveal that the coseismic defor-mation is not sensitive to the horizontal heterogeneity,but the postseismic deformation is sensitive to it.The postseismic deformation of the horizontally heterogeneous model is generally consistent with the observations of all geodetic surveys,such as GPS,InSAR and levelling,but not for the horizontally homogenous model.We also find that the non-monotonous variation of the postseismic deformation of the Wenchuan earthquake could be explained by a viscoelastic relaxation model with lateral heterogeneous medium across the Longmenshan fault.
基金supported by Science and Technology Development Fund of Gansu Earthquake Administration of Gansu Province (No. 2012M02)National Natural Science Foundation of China (No. 41274093)
文摘The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of the SdS phases between the S and ScS phases,which requires that certain stringent conditions be satisfied with respect to an epicentral distance and earthquake depth. Therefore,this approach is only practical for investigating the presence and topography of velocity interfaces in certain local regions around the world. The Russia–Kazakhstan border region has been a ‘‘blind spot'' with respect to this detection method. The seismic network deployed in the northeastern margin of the Tibetan Plateau has recorded relatively clear SdS phases for the MS6.3 earthquake that occurred in Spain on April 11,2010,allowing this blind spot to be studied. This paper compares the observed waveforms and synthetics and uses the travel times of the relevant phases to obtain a D'' discontinuity depth between2,610 and 2,740 km in the examined area. This study provides the first results regarding the depth of the D'' layer discontinuity for this region and represents an important addition to the global studies of the D'' layer.
文摘Fault-block structures of the Altay-Sayan folded area (ASFA) southeastern Siberia of Russia were used as the basis for creating a 3-D model. The surface structures were projected to depths by previous correlations between long and deep faults, with all layers and deformation factors defined. The mean deformation factor (Ds) is 0.12 unit/km^3 in the upper layer, 0.012 unit/km^3 in the intermediate layer, and 0.007 unit/km^3 in the lower layer of the 3-D ASFA neotectonic model. Ds allows correlation of the three distinguished layers with theological bodies that differ in their potential for accumulating elastic energy. 3-D modeling can be used as a methodological approach to projections in seismic prone areas such as the Krasnoyarsk region, for earthquake-hazard monitoring.