In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the o...In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.展开更多
The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of gre...The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.展开更多
Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal str...Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.展开更多
A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinj...A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinjiang. The epicenter intensity is VIII degrees (outside borders). The areas of intensity VII and VI are 7354km^2 and 1031km^2, respectively. This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt. Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake, accompanied with some phenomena of geological disaster.展开更多
On July 22, 2013, the Minxian-Zhangxian Ms6. 6 earthquake occurred on the east segment of Lintan-Dangchang fault. The analysis of digital elevation and remote sensing imaging shows that the east segment of Lintan-Dang...On July 22, 2013, the Minxian-Zhangxian Ms6. 6 earthquake occurred on the east segment of Lintan-Dangchang fault. The analysis of digital elevation and remote sensing imaging shows that the east segment of Lintan-Dangchang fault is still active and the main thrust feature of the fault switches to left lateral slip. With the field research of intensity and damage, several abnormal areas of degree VIII spread in the isoseismal line of degree VII and some abnormal areas of degree VII spread in the isoseismal line of degree VI. These abnormal areas are distributed along the hanging wall of the fault in a width of 2km. The analysis based on the remote sensing and digital elevation model shows that the segment of the Lintan-Dangchang fault south of Minxian mainly slips in left literal. The fault movement made the soil soft in the fault zone. The earthquake motion propagated along the fault zone. Therefore the strong earthquake motion caused foundation failure in the soft soil along the fault zone and the abnormal intense areas of disaster formed.展开更多
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftersh...Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.展开更多
基金funded by the Earthquake Science and Technology Development Fund of GEA(Grant No.2016M02,2016Y02)the Earthquake Tracking Task of CEA(2017010221)+1 种基金the Fund of Science for Earthquake Resilience,CEA,(XH16038Y,XH14049)Grant of National Natural Science Foundation of China(51408567,41304048)
文摘In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.
基金jointly sponsored by the Special Program of Earthquake Science and Technology of Earthquake Administration of Sichuan Province(LY1302) the National Key Technology R&D Program of China(2012BAK19802)
文摘The M_S6. 1 earthquake was a foreshock-mainshock-aftershock type which occurred in the boundary region between Zogang and Markam counties on August 12,2013. Within 9hours before the main shock seven earthquakes of greater than M_L2. 0 occurred,with a maximum of M_L4. 7. In this paper,the earthquake focal mechanism changing process of the Zogang-Markam M_S6. 1 earthquake sequence is studied by calculating the correlation coefficient of body wave spectral amplitudes,and the result shows that the correlation coefficients of spectral amplitude of foreshocks present high value fluctuation with an average value of 0. 86,which shows that the focal mechanism of foreshocks are similar;and the correlation coefficients of spectral amplitude of aftershocks present low value,which shows that the possibility of a large earthquake is not high after a time.
基金sponsored by the Central Level Scientific Research Institutes of Basic R&D Special Fund Business of the Institute of Crustal Dynamics,CEA(ZDJ2017-25)
文摘Based on the principle formula for the four-component strainmeters, we can directly obtain the specific plane strain, shear strain and azimuthal angle of the principal strain, and the maximum and minimum principal strains calculated afterwards are the indirect result. The problems of practicality of the sensitivity coefficients A and B of plane strain and shear strain are then discussed. Based on this idea, we analyzed the observation data of several four-component borehole strainmeters near the epicenter of the Yiliang M_S5.7 earthquake in 2012 and the Ludian M_S6.5 earthquake in 2014 in the Zhaotong area, Yunnan Province. The results show that the analysis based on the perspective of plane strain and shear strain has an obviously better effect than that based on the component readings, and can directly peel off the respective abnormality of the plane strain and shear strain. In addition, the correlation coefficient curves between measured data of two plane strains show significant anomalies which often occur several days before and during the earthquake.
基金sponsored by the Relation between Western Characteristics in Seismic Tectonic Area with Strong Earthquakes in Large Delta of Mid Asia(2008CB425703)Xinjiang Aseismic Design and Prevention Datum and Information Management(200906),China
文摘A Ms6. 8 earthquake occurred on October 5, 2008 in the Wuqia region in Xinjiang. The macroseismic epicenter is situated in the Nula village of the Kyrghyz Republic, 7km southwest of the Wuqia Yierkeshitan Port in Xinjiang. The epicenter intensity is VIII degrees (outside borders). The areas of intensity VII and VI are 7354km^2 and 1031km^2, respectively. This seismic event is related with movement of the NE-trending Kzikeaerkate fault belt. Buildings in the earthquake-stricken area were damaged or affected to a certain extent by this earthquake, accompanied with some phenomena of geological disaster.
基金supported by basic scientific research operating expenses of Institute of Earthquake Science,China Earthquake Administration(2012IES010202)
文摘On July 22, 2013, the Minxian-Zhangxian Ms6. 6 earthquake occurred on the east segment of Lintan-Dangchang fault. The analysis of digital elevation and remote sensing imaging shows that the east segment of Lintan-Dangchang fault is still active and the main thrust feature of the fault switches to left lateral slip. With the field research of intensity and damage, several abnormal areas of degree VIII spread in the isoseismal line of degree VII and some abnormal areas of degree VII spread in the isoseismal line of degree VI. These abnormal areas are distributed along the hanging wall of the fault in a width of 2km. The analysis based on the remote sensing and digital elevation model shows that the segment of the Lintan-Dangchang fault south of Minxian mainly slips in left literal. The fault movement made the soil soft in the fault zone. The earthquake motion propagated along the fault zone. Therefore the strong earthquake motion caused foundation failure in the soft soil along the fault zone and the abnormal intense areas of disaster formed.
基金sponsored by the Joint Earthquake Science Foundation,China (200804)
文摘Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning'er M6. 4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning'er M6. 4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40kin and the width is 30km, concentrated obviously at the lateral displacement area between the Pu'er fault and the NNE-trending faults, with the majority occurring on the Pu'er fault around the main shock. The depths of aftershocks are from 2kin to 12km, and the predominant distribution is in the depth of 8 ~ 10km. The mean depth is 7. 9kin. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu'er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu'er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.