In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland...In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.展开更多
We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous posit...We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.展开更多
Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in...Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in an area south of the epicenter obtained by repeated-leveling measurements ; pre-earthquake horizontal deformation by GPS observation during two periods in Sichuan-Yunnan area;vertical deformation along a short cross-fault leveling line in the epicenter area; and co-seismic near-field vertical and horizontal crustal-move- ment data by GPS. The model is basically "elastic-rebound", but involves a zone between two local faults that was squeezed out at the time of earthquake. :展开更多
The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from...The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a...Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model...In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.展开更多
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite s...The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.展开更多
Absolute and relative gravity data during 1998 to 2008 were used to study gravity field and temporal variation in the North-South seismic-belt region, and their correlation with seismic activities before and after Wen...Absolute and relative gravity data during 1998 to 2008 were used to study gravity field and temporal variation in the North-South seismic-belt region, and their correlation with seismic activities before and after Wenchuan Ms8.0 earthquake. The temporal variation of gravity field shows that the portentous information of the gravity field reflects the development and occurrence of earthquake more clearly. The variations of gravity field are inhomogeneous in the space-time distribution, and are associated with the development and occurrence of the Wenchuan Ms8.0 earthquake, also closely connected with active fault tectonics.展开更多
GPS and the COD VTEC data were studied in search of ionospheric VTEC changes in space and time that might be associated with the Wenchuan Ms8.0 earthquake on 12 May,2008. The result shows several significant anomalous...GPS and the COD VTEC data were studied in search of ionospheric VTEC changes in space and time that might be associated with the Wenchuan Ms8.0 earthquake on 12 May,2008. The result shows several significant anomalous decreases at 12:00 UT- 16:00 UT on April 29 and an anomalously increase at 14:00 UT - 18:00 UT on May 9. The anomalies had two humps, that were located on both sides of the geomagnetic equator and had a tendency of drifting towards the equator. Since the observed anomalies cannot be attributed to any other causes and since they occurred close to the time of the earthquake, we consider them to be possibly premonitory to the earthquake.展开更多
Co- and post-seismic vertical displacements of the Wenchuan earthquake derived from two measurements in 2008 and 2010 along two partly-damaged leveling lines near the epicenter show the following features: Co-seismic...Co- and post-seismic vertical displacements of the Wenchuan earthquake derived from two measurements in 2008 and 2010 along two partly-damaged leveling lines near the epicenter show the following features: Co-seismic displacement at Beichuan-Yingxiu fault was as large as 4. 711 m near Beichuan, where the maximum observed fault offset was 5.1 m. In contrast, the observed co-seismic offset of the Qingchuan fault in Pingwu County was only 0. 064 m. During 2008 - 2010, the post-seismic displacement rate was 5 - 27 mm/a near Beichuan-Yingxiu fault in Beichuan area, 20.6 mrn/a at Jiangyou-Guangyuan fault near Dakang, and only 0.2 - 1.3 mm/a at Qingehuan fault near Gucheng.展开更多
Surface co-seismic gravity changes and displacements caused by the Wenchuan Ms8.0 earthquake are calculated on the basis of the half-space dislocation theory and two fault models inversed, respectively, by Institute o...Surface co-seismic gravity changes and displacements caused by the Wenchuan Ms8.0 earthquake are calculated on the basis of the half-space dislocation theory and two fault models inversed, respectively, by Institute of Geophysics, CEA and USGS. The results show that 1 ) the dislocation consists of dip slip and rightlateral strike slip ;2 )the co-seismic gravity change shows a four-quadrant pattern ,which is greatly controlled by the distribution of the vertical displacements, especially in the near-filed ; 3 ) the gravity change is generally less than 10 × 10^-8 ms^-2 in the far-field,but as high as several 100 × 10^-8 ms^-2 in the near-filed. These results basically agree with observational results.展开更多
The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity da...The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.展开更多
This paper presents a broad-range study of the co-seismic deformation field of Wenchuan Ms8.0 earthquake by ScanSAR interferometry. The results show co-seismic displacements ranging from - 19.8 on the footwall side of...This paper presents a broad-range study of the co-seismic deformation field of Wenchuan Ms8.0 earthquake by ScanSAR interferometry. The results show co-seismic displacements ranging from - 19.8 on the footwall side of the seismogenic fault to 73.6 cm on the hanging-wall side, or from - 22.4 to 77.2 cm with atmospheric-delay correction by MODIS. These results differ from the GPS line-of-sight results by 4. 58 cm to 2.78 cm, respectively, on the average. We could not obtain the displacements near the earthquake-rupture zone due to incoherence problem.展开更多
The aftershock activity of Wenchuan Ms8.0 earthquake showed different spatial and temporal distri- butions along two different segments of the Longmenshan fault. This difference was likely the result of segmentation o...The aftershock activity of Wenchuan Ms8.0 earthquake showed different spatial and temporal distri- butions along two different segments of the Longmenshan fault. This difference was likely the result of segmentation of the earthquake rupture process, which in turn may be the result of the fault' s segmentation in its long-term geotectonic condition.展开更多
By using GPS and gravity data before and after the Wenchuan Ms8.0 earthquake and combining data from geological surveys and geophysical inversion studies, an initial coseismic fault model is constructed. The dip angle...By using GPS and gravity data before and after the Wenchuan Ms8.0 earthquake and combining data from geological surveys and geophysical inversion studies, an initial coseismic fault model is constructed. The dip angle changes of the fault slip distribution on the fault plane are inversed, and the inversion results show that the shape of the fault resembles a double-shovel. The Yingxiue Beichuan Fault is approximately 330 km long, the surface fault dip angle is 65.1, which gradually reduces with increasing depth to 0 at the detachment layer at a depth of 19.62 km. The Guanxiane Jiangyou Fault is approximately90 km long, and its dip angle at the surface is 55.3, which gradually reduces with increasing depth; the fault joins the Yingxiue Beichuan Fault at 13.75 km. Coseismic slip mainly occurs above a depth of 19 km. There are five concentrated rupture areas, Yingxiu,Wenchuan, Hanwang, Beichuan, and Pingwu, which are consistent with geological survey results and analyses of the aftershock distribution. The rupture mainly has a thrust component with a small dextral strikeeslip component. The maximum slip was more than10 m, which occurred near Beichuan and Hanwang. The seismic moment is 7.84 1020 Nm(Mw7.9), which is consistent with the seismological results.展开更多
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is...Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.展开更多
基金supported by the National Natural Science Foundation of China(90814009)Quality Control’s Special Funds for Scientific Researchon Public Causes(10-215)National Key Technology Research and Development Program(2008BAC35B05)
文摘In this paper we give a review of several previously published papers on anomalous tremors observed before the 2008 Ms8.0 Weuchuan earthquake. Based on the observed time and frequency shifts between coastal and inland stations, we discussed some methods to distinguish different kinds of microseisms, and speculated that a pre-earthquake typhoon might have caused a "mainland-originated microseism" which in turn trig- gered the earthquake.
基金supported by the National Natural Science Foundation of China(40974012)the Special Foundation for Seismic Research(200808080)the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201156063)
文摘We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.
基金supported by the north-east margin area of Qinghai-Tibetplateau,from the research project of integrated observation of geophysicsfields for China(200908029-5)Tianjin research project on basic appli-cation and front technology(08JCZDJC18900)
文摘Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in an area south of the epicenter obtained by repeated-leveling measurements ; pre-earthquake horizontal deformation by GPS observation during two periods in Sichuan-Yunnan area;vertical deformation along a short cross-fault leveling line in the epicenter area; and co-seismic near-field vertical and horizontal crustal-move- ment data by GPS. The model is basically "elastic-rebound", but involves a zone between two local faults that was squeezed out at the time of earthquake. :
基金supported by the Special Earthquake Research Project Granted by the China Earthquake Administration(201208006)the National Natural Science Foundation of China(41174083,40974062)
文摘The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supported by the National Natural Science Foundation of China(42322702,42177131)。
文摘Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
基金supported by the National Natural Science Foundation of China (Nos.41974068 and 41574040)Key International S&T Cooperation Project of P.R.China (No.2015DFA21260)。
文摘In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
基金supported by the State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration(CEA) (no. LED2010A02,LED2008A06)
文摘The 12 May 2008 Wenchuan Ms8.0 earthquake produced surface displacements along the causative fault, the Yingxiu-Beichuan Fault, which are up to several meters near the fault. Because of the large gradient, satellite synthetic aperture radar (SAR) interferometric data are strongly incoherent; the usual SAR interferometry method does not allow such displacements to be measured. In the present study, we employed another approach, the technique based on pixel offset tracking, to solve this problem. The used image data of six tracks are from the Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) dataset of Japan. The results show that the entire surface rupture belt is 238 km long, extending almost linearly in a direction of 42°north-east. It is offset left laterally by a north-west-striking fault at Xiaoyudong, and turns at Gaochuan, where the rupture belt shifts toward the south by 5 km, largely keeping the original trend. In terms of the features of the rupture traces, the rupture belt can be divided into five sections and three types. Among them, the Beichuan-Chaping and Hongkou-Yingxiu sections are relatively complex, with large widths and variable traces along the trend. The Pingtong-Nanba and Qingping-Jingtang sections appear uniform, characterized by straight traces and small widths. West of Yingxiu, the rupture traces are not clear. North of the rupture belt, surface displacements are 2.95 m on average, mostly 2-3.5 m, with 7-9 m the maximum near Beichuan. South of the rupture belt, the average displacement is 1.75 m, dominated by 1-2 m, with 3-4 m at a few sites. In the north, the displacements in the radar line of sight are of subsidence, and in the south, they are uplifted, in accordance with a right-slip motion that moves the northern wall of the fault to the east, and the southern wall to the west, respectively. Along the Guanxian-Jiangyou Fault, there is a uplift zone in the radar line of sight, which is 66 km long, 1.5-6 km wide, and has vertical displacements of approximately 2 m, but no observable rupture traces.
基金supported by the Special Earthquake Research ProjectGrant by China Earthquake Administration(201008007)NationalNatural Science Foundation of China(40874035)
文摘Absolute and relative gravity data during 1998 to 2008 were used to study gravity field and temporal variation in the North-South seismic-belt region, and their correlation with seismic activities before and after Wenchuan Ms8.0 earthquake. The temporal variation of gravity field shows that the portentous information of the gravity field reflects the development and occurrence of earthquake more clearly. The variations of gravity field are inhomogeneous in the space-time distribution, and are associated with the development and occurrence of the Wenchuan Ms8.0 earthquake, also closely connected with active fault tectonics.
基金supported by the 863 project of China(2007AA12Z169)
文摘GPS and the COD VTEC data were studied in search of ionospheric VTEC changes in space and time that might be associated with the Wenchuan Ms8.0 earthquake on 12 May,2008. The result shows several significant anomalous decreases at 12:00 UT- 16:00 UT on April 29 and an anomalously increase at 14:00 UT - 18:00 UT on May 9. The anomalies had two humps, that were located on both sides of the geomagnetic equator and had a tendency of drifting towards the equator. Since the observed anomalies cannot be attributed to any other causes and since they occurred close to the time of the earthquake, we consider them to be possibly premonitory to the earthquake.
基金supported by the Special Earthquake Research ProjectGrant from China Earthquake Administration( 200908029)
文摘Co- and post-seismic vertical displacements of the Wenchuan earthquake derived from two measurements in 2008 and 2010 along two partly-damaged leveling lines near the epicenter show the following features: Co-seismic displacement at Beichuan-Yingxiu fault was as large as 4. 711 m near Beichuan, where the maximum observed fault offset was 5.1 m. In contrast, the observed co-seismic offset of the Qingchuan fault in Pingwu County was only 0. 064 m. During 2008 - 2010, the post-seismic displacement rate was 5 - 27 mm/a near Beichuan-Yingxiu fault in Beichuan area, 20.6 mrn/a at Jiangyou-Guangyuan fault near Dakang, and only 0.2 - 1.3 mm/a at Qingehuan fault near Gucheng.
基金supported by the National Natural Science Fundation of China(40574012)
文摘Surface co-seismic gravity changes and displacements caused by the Wenchuan Ms8.0 earthquake are calculated on the basis of the half-space dislocation theory and two fault models inversed, respectively, by Institute of Geophysics, CEA and USGS. The results show that 1 ) the dislocation consists of dip slip and rightlateral strike slip ;2 )the co-seismic gravity change shows a four-quadrant pattern ,which is greatly controlled by the distribution of the vertical displacements, especially in the near-filed ; 3 ) the gravity change is generally less than 10 × 10^-8 ms^-2 in the far-field,but as high as several 100 × 10^-8 ms^-2 in the near-filed. These results basically agree with observational results.
基金financially supported by the National Natural Science Foundation of China (40574012,40374031)Key Project of the National Science & Technology Pillar Program in the Eleventh Five-year Plan(2006BAC01B02-02)Monitoring Project of China Earthquake Administration (201210)
文摘The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.
基金supported by the National Natural Science Foundation ofChina ( 40874003,41074007 and 40721001)the National DepartmentPublic Benefit Research Foundation ( Earthquake) ( 200808080)the Specialized Research Fund for the Doctoral Program of Higher Education( 20090141110055)
文摘This paper presents a broad-range study of the co-seismic deformation field of Wenchuan Ms8.0 earthquake by ScanSAR interferometry. The results show co-seismic displacements ranging from - 19.8 on the footwall side of the seismogenic fault to 73.6 cm on the hanging-wall side, or from - 22.4 to 77.2 cm with atmospheric-delay correction by MODIS. These results differ from the GPS line-of-sight results by 4. 58 cm to 2.78 cm, respectively, on the average. We could not obtain the displacements near the earthquake-rupture zone due to incoherence problem.
基金supported by the Earthguake Science Joint Foundation( A07007 ) The Project of China Eanthguake Administiton( 200708026)
文摘The aftershock activity of Wenchuan Ms8.0 earthquake showed different spatial and temporal distri- butions along two different segments of the Longmenshan fault. This difference was likely the result of segmentation of the earthquake rupture process, which in turn may be the result of the fault' s segmentation in its long-term geotectonic condition.
基金supported by the China Earthquake Administration, Institute of Seismology Foundation (IS201226003, IS201326128)the National Natural Science Foundation of China (41104049)the National Basic Research Program of China (2013CB733304-2)
文摘By using GPS and gravity data before and after the Wenchuan Ms8.0 earthquake and combining data from geological surveys and geophysical inversion studies, an initial coseismic fault model is constructed. The dip angle changes of the fault slip distribution on the fault plane are inversed, and the inversion results show that the shape of the fault resembles a double-shovel. The Yingxiue Beichuan Fault is approximately 330 km long, the surface fault dip angle is 65.1, which gradually reduces with increasing depth to 0 at the detachment layer at a depth of 19.62 km. The Guanxiane Jiangyou Fault is approximately90 km long, and its dip angle at the surface is 55.3, which gradually reduces with increasing depth; the fault joins the Yingxiue Beichuan Fault at 13.75 km. Coseismic slip mainly occurs above a depth of 19 km. There are five concentrated rupture areas, Yingxiu,Wenchuan, Hanwang, Beichuan, and Pingwu, which are consistent with geological survey results and analyses of the aftershock distribution. The rupture mainly has a thrust component with a small dextral strikeeslip component. The maximum slip was more than10 m, which occurred near Beichuan and Hanwang. The seismic moment is 7.84 1020 Nm(Mw7.9), which is consistent with the seismological results.
文摘Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.