Natural gas,consisting primarily of methane(CH_(4)),has become a major source of clean energy in modern society in many parts of the globe.Recent experimental observations and discoveries of deep-sourced abiotic CH_(4...Natural gas,consisting primarily of methane(CH_(4)),has become a major source of clean energy in modern society in many parts of the globe.Recent experimental observations and discoveries of deep-sourced abiotic CH_(4)in cold subduction zones indicate the important ability of cold subducted slabs to generate natural gas reservoirs.However,most CH_(4)flux and reservoirs remain unknown and their potential is overlooked in global carbon flux estimations.Massive abiotic CH_(4)-rich fluid inclusions(FIs)in garnet and omphacite from ultrahigh-pressure(UHP)eclogites have been found in the Western Tianshan(WT)UHP metamorphic belt,which provides one ideal case for quantification of abiotic CH_(4)stored in the cold subducted crust.By two methods,we assess the abiotic CH_(4)content stored in the Chinese WT HP–UHP metamorphic belt.Our calculations show that at least 113 Mt CH_(4)is stored in the WT eclogites.We also discuss the implications for CH_(4)reservoirs in subduction zones worldwide and speculate that the cold subduction zones may represent one of the largest,yet overlooked,sources of abiotic CH_(4)on Earth,which should not be ignored in the global natural resource and carbon flux estimations.展开更多
Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktag...Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktage rejuvenational foreland basement fold-thrust facie, ②Kalpin rejuvenational foreland basement fold-thrust facie,③ Kuqa rejuvenational foreland fold-thrust facie. ④ Southern Tianshan backarc foreland mollasse facie. ⑤ Southern Tianshan Late Paleozoic magmatic arc facie. ⑥ Southern Tianshan backarc melange facie. ⑦ Central Tianshan composite magmatic are facie, and ⑧ Northern Tianshan foreare melange facie. F1nally. we reconstructed the history of the western Tianshan Paleozoic tectonic evolution.展开更多
The Carboniferous carbonate rock with complicated composition and various rock types and lithofacies develops well in Tianshan Mt. , China, and plays an important role in the study of tectonics and metallogeny in the ...The Carboniferous carbonate rock with complicated composition and various rock types and lithofacies develops well in Tianshan Mt. , China, and plays an important role in the study of tectonics and metallogeny in the area. The content and variation characteristics of main pxides and elements are illustrated here based on a great amount of geochemical data.展开更多
We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and...We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and chemical composition of authigenic minerals,fluid evidence from fluid inclusions and formation water measurements were all used to fulfill this aim.Eodiagenesis occurred with the participation of meteoric water and connate water.Mesodiagenesis is related to high salinity fluids,which were attributed as originating from the overlying Neogene Jidike Formation evaporite(principal minerals including halite,anhydrite,glauberite,carnallite and thenardite).The onset of high salinity fluid migration is inferred to occur during the late Miocene(12.4-9.2 Ma)through the use of homogenization temperatures measured in the present study and K-Ar dating of authigenetic illites from previous work.This period is consistent with the crucial phase(13-10 Ma)that witnessed the rapid uplift of the southern Tianshan Mts and the stage when calcite and anhydrite veins formed in the studied strata.We thus argue that diagenesis related to high salinity fluids occurred as a response to the Tianshan Mts'rapid uplift and related tectonic processes.The flow of high salinity fluids was probably driven by a density gradient and channeled and focused by fractures formed contemporaneously.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFA0708501)the National Natural Science Foundation of China(Grant No.42172060)。
文摘Natural gas,consisting primarily of methane(CH_(4)),has become a major source of clean energy in modern society in many parts of the globe.Recent experimental observations and discoveries of deep-sourced abiotic CH_(4)in cold subduction zones indicate the important ability of cold subducted slabs to generate natural gas reservoirs.However,most CH_(4)flux and reservoirs remain unknown and their potential is overlooked in global carbon flux estimations.Massive abiotic CH_(4)-rich fluid inclusions(FIs)in garnet and omphacite from ultrahigh-pressure(UHP)eclogites have been found in the Western Tianshan(WT)UHP metamorphic belt,which provides one ideal case for quantification of abiotic CH_(4)stored in the cold subducted crust.By two methods,we assess the abiotic CH_(4)content stored in the Chinese WT HP–UHP metamorphic belt.Our calculations show that at least 113 Mt CH_(4)is stored in the WT eclogites.We also discuss the implications for CH_(4)reservoirs in subduction zones worldwide and speculate that the cold subduction zones may represent one of the largest,yet overlooked,sources of abiotic CH_(4)on Earth,which should not be ignored in the global natural resource and carbon flux estimations.
文摘Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktage rejuvenational foreland basement fold-thrust facie, ②Kalpin rejuvenational foreland basement fold-thrust facie,③ Kuqa rejuvenational foreland fold-thrust facie. ④ Southern Tianshan backarc foreland mollasse facie. ⑤ Southern Tianshan Late Paleozoic magmatic arc facie. ⑥ Southern Tianshan backarc melange facie. ⑦ Central Tianshan composite magmatic are facie, and ⑧ Northern Tianshan foreare melange facie. F1nally. we reconstructed the history of the western Tianshan Paleozoic tectonic evolution.
基金Supported by the National Natural Sciences Foundation of China and the Chinese Academy of Sciences
文摘The Carboniferous carbonate rock with complicated composition and various rock types and lithofacies develops well in Tianshan Mt. , China, and plays an important role in the study of tectonics and metallogeny in the area. The content and variation characteristics of main pxides and elements are illustrated here based on a great amount of geochemical data.
基金financially supported by the program of the National Natural Science Foundation of China(No.42072134)the Major Research Project on the Tethys Geodynamic System from the National Science Foundation of China(No.92055204)the Major Scientific and Technological Projects of the CNPC under Grant ZD2019-183-001。
文摘We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and chemical composition of authigenic minerals,fluid evidence from fluid inclusions and formation water measurements were all used to fulfill this aim.Eodiagenesis occurred with the participation of meteoric water and connate water.Mesodiagenesis is related to high salinity fluids,which were attributed as originating from the overlying Neogene Jidike Formation evaporite(principal minerals including halite,anhydrite,glauberite,carnallite and thenardite).The onset of high salinity fluid migration is inferred to occur during the late Miocene(12.4-9.2 Ma)through the use of homogenization temperatures measured in the present study and K-Ar dating of authigenetic illites from previous work.This period is consistent with the crucial phase(13-10 Ma)that witnessed the rapid uplift of the southern Tianshan Mts and the stage when calcite and anhydrite veins formed in the studied strata.We thus argue that diagenesis related to high salinity fluids occurred as a response to the Tianshan Mts'rapid uplift and related tectonic processes.The flow of high salinity fluids was probably driven by a density gradient and channeled and focused by fractures formed contemporaneously.