期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测
被引量:
1
1
作者
张代凤
崔东文
《长江科学院院报》
CSCD
北大核心
2024年第7期16-24,共9页
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预...
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。
展开更多
关键词
日径流预测
正则化极限学习机
蜣螂优化算法
珍鲹优化算法
泥环算法
小波包变换
三峡水库
下载PDF
职称材料
题名
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测
被引量:
1
1
作者
张代凤
崔东文
机构
云南省文山州水利电力勘察设计院
云南省文山州水务局
出处
《长江科学院院报》
CSCD
北大核心
2024年第7期16-24,共9页
基金
云南省创新团队建设专项(2018HC024)
云南省水利厅水利科技项目(2024BC202003)
国家澜湄合作基金项目(2018-1177-02)。
文摘
准确预测的入库日径流在水库优化调度中发挥着重要作用。为提高预测精度,提出一种基于小波包变换(WPT)和蜣螂优化(DBO)算法、珍鲹优化(GTO)算法、泥环算法(MRA)优化正则化极限学习机(RELM)的预测模型,并将其应用于三峡水库入库日径流预测研究。首先,利用WPT将三峡水库入库日径流时间序列分解为1个周期项分量和1个波动项分量;其次,利用DBO、GTO、MRA分别优化RELM输入层权值和隐含层偏差,建立WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型;最后,利用所建立的3种模型分别对入库日径流周期项分量和波动项分量进行预测和重构,并构建基于极限学习机(ELM)的WPT-DBO-ELM、WPT-GTO-ELM、WPT-MRA-ELM模型、基于BP神经网络的WPT-DBO-BP、WPT-GTO-BP、WPT-MRA-BP模型、未经优化的WPT-RELM、WPT-ELM、WPT-BP模型和未经分解的DBO-RELM、GTO-RELM、MRA-RELM模型作对比分析模型。结果表明:①WPT-DBO-RELM、WPT-GTO-RELM、WPT-MRA-RELM模型对三峡水库入库日径流预测的平均绝对百分比误差MAPE分别为0.512%、0.519%、0.762%,平均绝对误差MAE分别为54.05、55.97、86.76 m^(3)/s,均方根误差RMSE分别为84.99、84.81、128.18 m^(3)/s,决定系数DC≥0.9994,希尔不等系数TIC≤0.00517,预测效果优于其他12种模型,具有更高的预测精度和更好的泛化能力。②DBO、GTO、MRA能有效优化RELM网络参数,显著提高RELM预测性能。③引入正则化项的RELM可有效防止预测模型过拟合,提高模型的泛化能力,预测性能优于ELM、BP网络。④所构建的3种模型预测精度高、计算规模小,是一种有效的入库日径流时间序列预测模型。
关键词
日径流预测
正则化极限学习机
蜣螂优化算法
珍鲹优化算法
泥环算法
小波包变换
三峡水库
Keywords
daily runoff forecast
regularized extreme learning machine
Dung Beetle Optimizer
Giant Trevally Optimizer
mud ring algorithm
wavelet packet transform
Three Gorges Reservoir
分类号
TV124 [水利工程—水文学及水资源]
P333 [天文地球—水文科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于3种新型群体智能算法优化正则化极限学习机的三峡水库入库日径流预测
张代凤
崔东文
《长江科学院院报》
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部