Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsio...Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsion drilling fluid formulated with a methyl ester extracted from Indian mango seed oil was evaluated.The effect of the weight percent of different constituents of the emulsion/suspension including the oil phase,bentonite,and polyanionic cellulose polymer on the rheology and the fluid loss was examined.The methyl ester oil phase/mud system displayed superior physical,chemical,rheological and filtration properties relative to the diesel and the mango seed oil.Eco-toxicity of the methyl ester and diesel(O/W)emulsion mud systems was assessed using the acute lethal concentration test.The Indian mango methyl ester(O/W)emulsion mud displayed much less impact on fish population.Flow characteristics collected from the flow model at 85°C suggested excellent shear thinning behavior of the Indian mango methyl ester(IMME)(O/W)emulsion mud.Moreover,the IMME(O/W)emulsion displayed strong pseudoplastic behavior,an attractive feature in a drilling mud,with increasing clay content and polymer concentration.The methyl ester mud was thermally stable over a wide range of the constituent concentrations.Furthermore,a particle size analysis revealed that engineered drilling muds targeting suspension of particles with certain size range can be formulated by changing the volume fraction of the methyl ester in the mud system.展开更多
Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system ...Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.展开更多
基金acknowledge Schulich School of Engineering,The University of Calgary,for their support.
文摘Drilling muds with less environmental impact are highly desired over conventional diesel-based mud systems,especially in light of the emerging strict environmental laws.In this article,a novel oil-in-water(O/W)emulsion drilling fluid formulated with a methyl ester extracted from Indian mango seed oil was evaluated.The effect of the weight percent of different constituents of the emulsion/suspension including the oil phase,bentonite,and polyanionic cellulose polymer on the rheology and the fluid loss was examined.The methyl ester oil phase/mud system displayed superior physical,chemical,rheological and filtration properties relative to the diesel and the mango seed oil.Eco-toxicity of the methyl ester and diesel(O/W)emulsion mud systems was assessed using the acute lethal concentration test.The Indian mango methyl ester(O/W)emulsion mud displayed much less impact on fish population.Flow characteristics collected from the flow model at 85°C suggested excellent shear thinning behavior of the Indian mango methyl ester(IMME)(O/W)emulsion mud.Moreover,the IMME(O/W)emulsion displayed strong pseudoplastic behavior,an attractive feature in a drilling mud,with increasing clay content and polymer concentration.The methyl ester mud was thermally stable over a wide range of the constituent concentrations.Furthermore,a particle size analysis revealed that engineered drilling muds targeting suspension of particles with certain size range can be formulated by changing the volume fraction of the methyl ester in the mud system.
基金Supported by the Basic Research Funds Reserved to State-run Universities(18CX02171A,18CX02033A)
文摘Traditional oil-based drilling muds(OBMs) have a relatively high solid content, which is detrimental to penetration rate increase and reservoir protection. Aimed at solving this problem, an organoclay-free OBM system was studied, the synthesis methods and functioning mechanism of key additives were introduced, and performance evaluation of the system was performed. The rheology modifier was prepared by reacting a dimer fatty acid with diethanolamine, the primary emulsifier was made by oxidation and addition reaction of fatty acids, the secondary emulsifier was made by amidation of a fatty acid, and finally the fluid loss additive of water-soluble acrylic resin was synthesized by introducing acrylic acid into styrene/butyl acrylate polymerization. The rheology modifier could enhance the attraction between droplets, particles in the emulsion via intermolecular hydrogen bonding and improve the shear stress by forming a three-dimensional network structure in the emulsion. Lab experimental results show that the organoclay-free OBM could tolerate temperatures up to 220 ?C and HTHP filtration is less than 5 m L. Compared with the traditional OBMs, the organoclay-free OBM has low plastic viscosity, high shear stress, high ratio of dynamic shear force to plastic viscosity and high permeability recovery, which are beneficial to penetration rate increase, hole cleaning and reservoir protection.