Wellbore instability is reported frequently as one of the most significant incidents during drilling operations.Analysis of wellbore instability includes estimation of formation mechanical properties and the state of ...Wellbore instability is reported frequently as one of the most significant incidents during drilling operations.Analysis of wellbore instability includes estimation of formation mechanical properties and the state of in situ stresses.In this analysis,the only controllable parameter during drilling operation is the mud weight.If the mud weight is larger than anticipated,the mud will invade into the formation,causing tensile failure of the formation.On the other hand,a lower mud weight can result in shear failures of rock,which is known as borehole breakouts.To predict the potential for failures around the wellbore during drilling,one should use a failure criterion to compare the rock strength against induced tangential stresses around the wellbore at a given mud pressure.The Mohr–Coulomb failure criterion is one of the commonly accepted criteria for estimation of rock strength at a given state of stress.However,the use of other criteria has been debated in the literature.In this paper,Mohr–Coulomb,Hoek–Brown and Mogi–Coulomb failure criteria were used to estimate the potential rock failure around a wellbore located in an onshorefield of Iran.The log based analysis was used to estimate rock mechanical properties of formations and state of stresses.The results indicated that amongst different failure criteria,the Mohr–Coulomb criterion underestimates the highest mud pressure required to avoid breakouts around the wellbore.It also predicts a lower fracture gradient pressure.In addition,it was found that the results obtained from Mogi–Coulomb criterion yield a better comparison with breakouts observed from the caliper logs than that of Hoek–Brown criterion.It was concluded that the Mogi–Coulomb criterion is a better failure criterion as it considers the effect of the intermediate principal stress component in the failure analysis.展开更多
The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore st...The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore stability is determined and simulated using FLAC3 D software and a finite volume model established with drilled strata geomechanical features.The initiation of plastic condition is used to determine the safe mud weight window(SMWW)in specific sandstone layers.The effects of rock strength parameters,major stresses around the wellbore and pore pressure on the SMWW are investigated for this wellbore.Sensitivity analysis reveals that a reduction in cohesion and internal friction angle values leads to a significant narrowing of the SMWW.On the other hand,the reduction of pore pressure and the ratio between maximum and minimum horizontal stresses causes the SMWW to widen significantly.The ability to readily quantify changes in SMWW indicates that the developed model is suitable as a well planning and monitoring tool.展开更多
文摘Wellbore instability is reported frequently as one of the most significant incidents during drilling operations.Analysis of wellbore instability includes estimation of formation mechanical properties and the state of in situ stresses.In this analysis,the only controllable parameter during drilling operation is the mud weight.If the mud weight is larger than anticipated,the mud will invade into the formation,causing tensile failure of the formation.On the other hand,a lower mud weight can result in shear failures of rock,which is known as borehole breakouts.To predict the potential for failures around the wellbore during drilling,one should use a failure criterion to compare the rock strength against induced tangential stresses around the wellbore at a given mud pressure.The Mohr–Coulomb failure criterion is one of the commonly accepted criteria for estimation of rock strength at a given state of stress.However,the use of other criteria has been debated in the literature.In this paper,Mohr–Coulomb,Hoek–Brown and Mogi–Coulomb failure criteria were used to estimate the potential rock failure around a wellbore located in an onshorefield of Iran.The log based analysis was used to estimate rock mechanical properties of formations and state of stresses.The results indicated that amongst different failure criteria,the Mohr–Coulomb criterion underestimates the highest mud pressure required to avoid breakouts around the wellbore.It also predicts a lower fracture gradient pressure.In addition,it was found that the results obtained from Mogi–Coulomb criterion yield a better comparison with breakouts observed from the caliper logs than that of Hoek–Brown criterion.It was concluded that the Mogi–Coulomb criterion is a better failure criterion as it considers the effect of the intermediate principal stress component in the failure analysis.
文摘The wellbore stability of a vertical well through the sandstone reservoir layers of the Asmari oil-bearing formation in south-west Iran is investigated.The safe drilling-fluid density range for maintaining wellbore stability is determined and simulated using FLAC3 D software and a finite volume model established with drilled strata geomechanical features.The initiation of plastic condition is used to determine the safe mud weight window(SMWW)in specific sandstone layers.The effects of rock strength parameters,major stresses around the wellbore and pore pressure on the SMWW are investigated for this wellbore.Sensitivity analysis reveals that a reduction in cohesion and internal friction angle values leads to a significant narrowing of the SMWW.On the other hand,the reduction of pore pressure and the ratio between maximum and minimum horizontal stresses causes the SMWW to widen significantly.The ability to readily quantify changes in SMWW indicates that the developed model is suitable as a well planning and monitoring tool.