Relying upon the basic tenets of scientific modeling, an ansatz for the evaluation of proton affinity of mole-cules are evolved in terms of a four component model. The components of the model chosen are global de-scri...Relying upon the basic tenets of scientific modeling, an ansatz for the evaluation of proton affinity of mole-cules are evolved in terms of a four component model. The components of the model chosen are global de-scriptors like ionization energies, global softness, electronegativity and electrophilicity index. These akin quantum mechanical descriptors of atoms and molecules are linked with the charge rearrangement and polarization that occur during the physico-chemical process of protonation of molecules. The suggested ansatz is invoked to compute the protonation energy of as many as 43 compounds of diverse physico-chemical nature viz, hydrocarbons, alcohols, carbonyls, carboxylic acids, esters, aliphatic amines and aromatic amines. A detailed comparative study of theoretically evaluated protonation energies of the above mentioned molecules vis-à-vis their corresponding experimental counterparts reveals that there is a close agreement between the theory and experiment. Thus the results strongly suggest that the proposed modeling and the ansatz for computing PA, the proton affinity, of molecules for studying the physico-chemical process of protonation may be valid proposition.展开更多
文摘Relying upon the basic tenets of scientific modeling, an ansatz for the evaluation of proton affinity of mole-cules are evolved in terms of a four component model. The components of the model chosen are global de-scriptors like ionization energies, global softness, electronegativity and electrophilicity index. These akin quantum mechanical descriptors of atoms and molecules are linked with the charge rearrangement and polarization that occur during the physico-chemical process of protonation of molecules. The suggested ansatz is invoked to compute the protonation energy of as many as 43 compounds of diverse physico-chemical nature viz, hydrocarbons, alcohols, carbonyls, carboxylic acids, esters, aliphatic amines and aromatic amines. A detailed comparative study of theoretically evaluated protonation energies of the above mentioned molecules vis-à-vis their corresponding experimental counterparts reveals that there is a close agreement between the theory and experiment. Thus the results strongly suggest that the proposed modeling and the ansatz for computing PA, the proton affinity, of molecules for studying the physico-chemical process of protonation may be valid proposition.