The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o...The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.展开更多
In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and M...In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.展开更多
The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating...The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating of gel on probes is influenced with a material of a probe and configuration of probes in a solution.展开更多
文摘The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.
文摘In the present study the MOFLP models have been developed for the optimal cropping pattern planning which maximizes the four objectives such as Net Benefits (NB), Crop Production (CP), Employment Generation (EG) and Manure Utilization (MU) under conflicting situation and also, for maximization of Releases for Irrigation (RI) and Releases for Power (RP) simultaneously under uncertainty by considering the fuzziness in the objective functions. The developed models have been applied using the LINGO 13 (Language for Interactive General Optimization) optimization software to the case study of the Jayakwadi Project Stage-II across Sindhphana River, in the State of Maharashtra India. The various constraints have been taken into consideration like sowing area, affinity to crop, labour availability, manure availability, water availability for optimal cropping pattern planning. Similarly constraints to find the optimal reservoir operating policy are releases for power and turbine capacity, irrigation demand, reservoir storage capacity, reservoir storage continuity. The level of satisfaction for a compromised solution of optimal cropping pattern planning for four conflicting objectives under fuzzy environment is worked out to be λ = 0.68. The MOFLP compromised solution provides NB = 1088.46 (Million Rupees), CP = 241003 (Tons), EG = 23.13 (Million Man days) and MU = 111454.70 (Tons) respectively. The compromised solution for optimal operation of multi objective reservoir yields the level of satisfaction (λ) = 0.533 for maximizing the releases for irrigation and power simultaneously by satisfying the constraint of the system under consideration. The compromised solution provides the optimal releases, i.e. RI = 348.670 Mm3 and RP = 234.285 Mm3 respectively.
文摘The article provides results of experiments on research of speed of escalating of vanadium gel on short-circuited probes from various metals, particularly from copper and aluminium it is shown that speed of escalating of gel on probes is influenced with a material of a probe and configuration of probes in a solution.