Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper,...Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.展开更多
The characteristics of mc-Si used for solar cells during H2 ambient annealing at 800-1200 ℃ were investigated by means of FTIR and QSSPCD. The results reveal that grain boundaries or defects in mc-Si may facilitate t...The characteristics of mc-Si used for solar cells during H2 ambient annealing at 800-1200 ℃ were investigated by means of FTIR and QSSPCD. The results reveal that grain boundaries or defects in mc-Si may facilitate the formation of oxygen precipitates, and the formation of oxygen precipitates has deleterious effect on the lifetime of mc-Si. Decreasing lifetime could result from the formation of new recombination during annealing. Additionally, It is found that hydrogen may facilitate the formation of oxygen precipitates in mc-Si. On the other hand, the diffusion of hydrogen may passivate the defects/boundaries and it is beneficial to the lifetime of mc-Si.展开更多
基金supported by the Prospective Project of Industry–University–Research Institution of Jiangsu Province,China(Grant No.BY2010125)the National Natural Science Foundation of China(Grant No.11175127)
文摘Due to it being environmentally friendly, much attention has been paid to the dry plasma texturing technique serving as an alternative candidate for multicrystalline silicon (mc-Si) surface texturing. In this paper, capacitively coupled plasma (CCP) driven by a dual frequency (DF) of 40.68 MHz and 13.56 MHz is first used for plasma texturing of mc-Si with SF6/O2 gas mixture. Using a hairpin resonant probe and optical emission techniques, DF-CCP characteristics and their influence on mc-silicon surface plasma texturing are investigated at different flow rate ratios, pressures, and radio-frequency (RF) input powers. Experimental results show that suitable plasma texturing of mc-silicon occurs only in a narrow range of plasma parameters, where electron density ne must be larger than 6.3 x 109 cm-3 and the spectral intensity ratio of the F atom to that of the O atom ([F]/[O]) in the plasma must be between 0.8 and 0.3. Out of this range, no cone-like structure is formed on the mc-silicon surface. In our experiments, the lowest reflectance of about 7.3% for mc-silicon surface texturing is obtained at an [F]/[O] of 0.5 and ne of 6.9 × 109 cm-3.
文摘The characteristics of mc-Si used for solar cells during H2 ambient annealing at 800-1200 ℃ were investigated by means of FTIR and QSSPCD. The results reveal that grain boundaries or defects in mc-Si may facilitate the formation of oxygen precipitates, and the formation of oxygen precipitates has deleterious effect on the lifetime of mc-Si. Decreasing lifetime could result from the formation of new recombination during annealing. Additionally, It is found that hydrogen may facilitate the formation of oxygen precipitates in mc-Si. On the other hand, the diffusion of hydrogen may passivate the defects/boundaries and it is beneficial to the lifetime of mc-Si.