This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto...This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.展开更多
针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标...针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标ABC算法,并在机电执行器设计的实际应用工程设计问题中,将所提出的改进多目标ABC与其他典型的群智能算法进行优化性能比较。通过实验验证可知,所提出的MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition)算法在求解机电执行器设计问题基准测试用例时,与典型算法相比,具有较好的问题求解精度。并且MOABC/DD的实验结果较为稳定,从而证明了MOABC/DD具有较高的求解稳定性和健壮性。展开更多
文摘This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.
文摘针对求解多目标优化问题(MOP:Multi-Objective Problem)时,人工蜂群算法(ABC:Artificial Bee Colony)存在难以收敛和候选解多样性难以保持的问题,对其各部分求解策略进行了改进。基于ABC算法框架,设计了一种基于自适应求解策略的多目标ABC算法,并在机电执行器设计的实际应用工程设计问题中,将所提出的改进多目标ABC与其他典型的群智能算法进行优化性能比较。通过实验验证可知,所提出的MOABC/DD(Multi-Objective Artificial Bee Colony Based on Dominance and Decomposition)算法在求解机电执行器设计问题基准测试用例时,与典型算法相比,具有较好的问题求解精度。并且MOABC/DD的实验结果较为稳定,从而证明了MOABC/DD具有较高的求解稳定性和健壮性。