It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the proces...It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the process leads to unexpected reactions and changes its parameters, etc. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents perceive, behave "reasonably", communicate with other agents. Agents can represent equipment and operations in batch processes as recommended by the ISA $88. Jadex system is based on Java language and on FIPA org. recommendations. The description of ripening tank T406 and recipe for yogurt production in the holding of MADETA Corp. in the Czech Rep. It is described modeling and displaying of"normal" and error, fault unit state of the ripening tank. Agents are within the Jadex system and describing the behavior of ripening tank T406 with state diagrams-automata and assist in diagnosing of fault states. States are described in XML language-SCXML (State Charts XML). Jadex Control Center-JCC represents a major access point to use for operating in real time.展开更多
The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many d...The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.展开更多
In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these fe...In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these features, one can model naturally the dynamic behavior of complex systems and the communication between these entities. For this, we propose mathematical definitions attached to firing transitions. To validate our contribution, we will deal with real examples.展开更多
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi...Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.展开更多
The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud se...The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud services have become prevalent across various industries. While these services offer undeniable benefits, they face significant threats, particularly concerning the sensitivity of the data they handle. Many existing mathematical models struggle to accurately depict the complex scenarios of cloud systems. In response to this challenge, this paper proposes a behavioral model for ransomware propagation within such environments. In this model, each component of the environment is defined as an agent responsible for monitoring the propagation of malware. Given the distinct characteristics and criticality of these agents, the impact of malware can vary significantly. Scenario attacks are constructed based on real-world vulnerabilities documented in the Common Vulnerabilities and Exposures (CVEs) through the National Vulnerability Database. Defender actions are guided by an Intrusion Detection System (IDS) guideline. This research aims to provide a comprehensive framework for understanding and addressing ransomware threats in cloud systems. By leveraging an agent- based approach and real-world vulnerability data, our model offers valuable insights into detection and mitigation strategies for safeguarding sensitive cloud-based assets.展开更多
A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot ...A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot control, wireless communication and control of multiple robots. In the paper, we present the design and the hardware architecture and software architecture of our distributed multiple robot system.展开更多
Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and multi disturbances. According to the distributed intelligent control strategy based on the multi (a...Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and multi disturbances. According to the distributed intelligent control strategy based on the multi (agent,) the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed. At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.展开更多
The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as...The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as Internet and Ethernet was proposed. The architecture is characterized by interoperability, collaboration and intelligence by means of CORBA and multi agent technologies. The architecture and exemplifies it by a common project was described.展开更多
文摘It is impossible to plan in advance unpredictable phenomena at monitoring, diagnosis and control of industrial batch and continuous equipment and processes such as chemical composition of the raw materials, the process leads to unexpected reactions and changes its parameters, etc. The agent is active, a program entity, has its own ideas how to perform the tasks of the own agenda. Agents perceive, behave "reasonably", communicate with other agents. Agents can represent equipment and operations in batch processes as recommended by the ISA $88. Jadex system is based on Java language and on FIPA org. recommendations. The description of ripening tank T406 and recipe for yogurt production in the holding of MADETA Corp. in the Czech Rep. It is described modeling and displaying of"normal" and error, fault unit state of the ripening tank. Agents are within the Jadex system and describing the behavior of ripening tank T406 with state diagrams-automata and assist in diagnosing of fault states. States are described in XML language-SCXML (State Charts XML). Jadex Control Center-JCC represents a major access point to use for operating in real time.
文摘The tremendous growth of the cloud computing environments requires new architecture for security services. Cloud computing is the utilization of many servers/data centers or cloud data storages (CDSs) housed in many different locations and interconnected by high speed networks. CDS, like any other emerging technology, is experiencing growing pains. It is immature, it is fragmented and it lacks standardization. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this paper a comprehensive security framework based on Multi-Agent System (MAS) architecture for CDS to facilitate confidentiality, correctness assurance, availability and integrity of users' data in the cloud is proposed. Our security framework consists of two main layers as agent layer and CDS layer. Our propose MAS architecture includes main five types of agents: Cloud Service Provider Agent (CSPA), Cloud Data Confidentiality Agent (CDConA), Cloud Data Correctness Agent (CDCorA), Cloud Data Availability Agent (CDAA) and Cloud Data Integrity Agent (CDIA). In order to verify our proposed security framework based on MAS architecture, pilot study is conducted using a questionnaire survey. Rasch Methodology is used to analyze the pilot data. Item reliability is found to be poor and a few respondents and items are identified as misfits with distorted measurements. As a result, some problematic questions are revised and some predictably easy questions are excluded from the questionnaire. A prototype of the system is implemented using Java. To simulate the agents, oracle database packages and triggers are used to implement agent functions and oracle jobs are utilized to create agents.
文摘In this paper, we present a new formalism for Modeling Multi Agent Systems (MAS). Our model based a PN is able to describe not only not the internal state of each agent modeled but also its behavior. Owing to these features, one can model naturally the dynamic behavior of complex systems and the communication between these entities. For this, we propose mathematical definitions attached to firing transitions. To validate our contribution, we will deal with real examples.
基金National Natural Science Foundation of China,Grant/Award Number:61872171The Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering,Grant/Award Number:2021490811。
文摘Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.
文摘The increasing trend toward dematerialization and digitalization has prompted a surge in the adoption of IT service providers, offering cost-effective alternatives to traditional local services. Consequently, cloud services have become prevalent across various industries. While these services offer undeniable benefits, they face significant threats, particularly concerning the sensitivity of the data they handle. Many existing mathematical models struggle to accurately depict the complex scenarios of cloud systems. In response to this challenge, this paper proposes a behavioral model for ransomware propagation within such environments. In this model, each component of the environment is defined as an agent responsible for monitoring the propagation of malware. Given the distinct characteristics and criticality of these agents, the impact of malware can vary significantly. Scenario attacks are constructed based on real-world vulnerabilities documented in the Common Vulnerabilities and Exposures (CVEs) through the National Vulnerability Database. Defender actions are guided by an Intrusion Detection System (IDS) guideline. This research aims to provide a comprehensive framework for understanding and addressing ransomware threats in cloud systems. By leveraging an agent- based approach and real-world vulnerability data, our model offers valuable insights into detection and mitigation strategies for safeguarding sensitive cloud-based assets.
基金Supported by the High Technology Research and Developmeent Program of China
文摘A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot control, wireless communication and control of multiple robots. In the paper, we present the design and the hardware architecture and software architecture of our distributed multiple robot system.
文摘Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and multi disturbances. According to the distributed intelligent control strategy based on the multi (agent,) the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed. At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.
文摘The MACE - a Multi agent based distributed measurement architecture in CORBA environment used to develop intelligent distributed measurement system for remote control and monitoring of instruments over network such as Internet and Ethernet was proposed. The architecture is characterized by interoperability, collaboration and intelligence by means of CORBA and multi agent technologies. The architecture and exemplifies it by a common project was described.
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800), Key Project of Natural Science Fouudation of China (60934003), National Natural Science Foundation of China (61074065, 60974018), Natural Science Foundation of Hebei Province(F2012203119), and the Science Foundation of Yanshan University for the Excellent Ph. D. Students (201204) The authors thank Chen Cai-Lian of the Shanghai Jiao Tong University for her comments on English polishing and problem formulation.