In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because ...As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because it can significantly improve the productivity of a single well, inhibit coning and enhance oil recovery. Study on sweep efficiency and parameters optimization of multi-branch horizontal well is at the leading edge of research. Therefore, the study is important for enhancing oil recovery and integral exploitation benefit of oil fields. In many applications, streamline simulation shows particular advantages over finite-difference simulation. With the advantages of streamline simulation such as its ability to display paths of fluid flow and acceleration factor in simulation, the flooding process is more visual. The communication between wells and flooding area has been represented appropriately. This method has been applied to the XS9 reservoir in Daqing Oilfield. The production history of this reservoir is about 10 years. The reservoir is maintained above bubble point so that the simulation meets the slight compressibility assumption. New horizontal wells are drilled following this rule.展开更多
According to characteristic of hydroforming of parallel multi-branch tubes,multi-objective problems were transformed to single objective problem of relational grade comparison by grey system theory.Two different objec...According to characteristic of hydroforming of parallel multi-branch tubes,multi-objective problems were transformed to single objective problem of relational grade comparison by grey system theory.Two different objectives were selected,according to the principle that process parameters were optimal which of grey relational grade were maximum,the optimal loading parameters under different objective condition were obtained,and loading paths were optimized.The results indicated that parallel multi-branch tubes hydroformed under loading paths optimized by grey system theory could meet with the requirement that objective was optimal.And the optimal loading paths under different objectives were different,and the appropriate objective should be selected according to forming characteristic.展开更多
The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of th...The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.展开更多
脱机手写中文字符识别(handwritten Chinese character recognition,HCCR)在计算机视觉领域一直是一个巨大的挑战。相比传统方法,基于深度学习的网络通过训练大量数据在识别任务中取得了差异化的效果,但识别效果依旧处于发展过程中。基...脱机手写中文字符识别(handwritten Chinese character recognition,HCCR)在计算机视觉领域一直是一个巨大的挑战。相比传统方法,基于深度学习的网络通过训练大量数据在识别任务中取得了差异化的效果,但识别效果依旧处于发展过程中。基于此,结合DW卷积和残差连接设计了一种多分支残差模块,该模块通过DW卷积以较小的内存和参数量为代价来加深网络深度,增强网络的特征提取能力;再通过残差连接抑制网络梯度问题和退化问题;另外,提出了一种多分支权重算法,来改善多分支残差模块中各分支的权重分配问题;并将六个以多分支残差模块为主的结构线性连接,组成HCCR识别网络。该模型在CASIA-HWDB1.0、CASIA-HWDB1.1、ICDAR2013数据集上的识别准确率分别达到了97.77%、97.30%、97.64%,表现出高精度的识别效果。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
文摘As a highly efficient production method, the technique of multi-branch horizontal well is widely used in low permeability reservoirs, heavy oil reservoirs, shallow layer reservoirs and multi-layer reservoirs, because it can significantly improve the productivity of a single well, inhibit coning and enhance oil recovery. Study on sweep efficiency and parameters optimization of multi-branch horizontal well is at the leading edge of research. Therefore, the study is important for enhancing oil recovery and integral exploitation benefit of oil fields. In many applications, streamline simulation shows particular advantages over finite-difference simulation. With the advantages of streamline simulation such as its ability to display paths of fluid flow and acceleration factor in simulation, the flooding process is more visual. The communication between wells and flooding area has been represented appropriately. This method has been applied to the XS9 reservoir in Daqing Oilfield. The production history of this reservoir is about 10 years. The reservoir is maintained above bubble point so that the simulation meets the slight compressibility assumption. New horizontal wells are drilled following this rule.
基金Sponsored by the National Natural Science Foundation of China(Grant No.U0934006)
文摘According to characteristic of hydroforming of parallel multi-branch tubes,multi-objective problems were transformed to single objective problem of relational grade comparison by grey system theory.Two different objectives were selected,according to the principle that process parameters were optimal which of grey relational grade were maximum,the optimal loading parameters under different objective condition were obtained,and loading paths were optimized.The results indicated that parallel multi-branch tubes hydroformed under loading paths optimized by grey system theory could meet with the requirement that objective was optimal.And the optimal loading paths under different objectives were different,and the appropriate objective should be selected according to forming characteristic.
文摘The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.
文摘脱机手写中文字符识别(handwritten Chinese character recognition,HCCR)在计算机视觉领域一直是一个巨大的挑战。相比传统方法,基于深度学习的网络通过训练大量数据在识别任务中取得了差异化的效果,但识别效果依旧处于发展过程中。基于此,结合DW卷积和残差连接设计了一种多分支残差模块,该模块通过DW卷积以较小的内存和参数量为代价来加深网络深度,增强网络的特征提取能力;再通过残差连接抑制网络梯度问题和退化问题;另外,提出了一种多分支权重算法,来改善多分支残差模块中各分支的权重分配问题;并将六个以多分支残差模块为主的结构线性连接,组成HCCR识别网络。该模型在CASIA-HWDB1.0、CASIA-HWDB1.1、ICDAR2013数据集上的识别准确率分别达到了97.77%、97.30%、97.64%,表现出高精度的识别效果。