This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe in...This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topolog...This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected...In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.展开更多
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr...Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.展开更多
It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs...It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.展开更多
Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the bra...Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the brain and body,causing symptoms including tiredness,muscle weakness,and difficulty with memory and balance.Traditional methods for detecting MS are less precise and time-consuming,which is a major gap in addressing this problem.This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy.This paper proposed a novel approach named FAD consisting of Deep Neural Network(DNN)fused with an Artificial Neural Network(ANN)to detect MS with more efficiency and accuracy,utilizing regularization and combat over-fitting.We use gene expression data for MS research in the GEO GSE17048 dataset.The dataset is preprocessed by performing encoding,standardization using min-max-scaler,and feature selection using Recursive Feature Elimination with Cross-Validation(RFECV)to optimize and refine the dataset.Meanwhile,for experimenting with the dataset,another deep-learning hybrid model is integrated with different ML models,including Random Forest(RF),Gradient Boosting(GB),XGBoost(XGB),K-Nearest Neighbors(KNN)and Decision Tree(DT).Results reveal that FAD performed exceptionally well on the dataset,which was evident with an accuracy of 96.55%and an F1-score of 96.71%.The use of the proposed FAD approach helps in achieving remarkable results with better accuracy than previous studies.展开更多
Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experi...Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.展开更多
There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe...There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of sys...This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.展开更多
This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,mul...This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
基金the National Natural Science Foundation of China(NSFC)-Excellent Young Scientists Fund(Hong Kong and Macao)under Grant 62222318.
文摘This paper investigates the robust cooperative output regulation problem for a class of heterogeneousuncertain linear multi-agent systems with an unknown exosystem via event-triggered control (ETC). By utilizingthe internal model approach and the adaptive control technique, a distributed adaptive internal model isconstructed for each agent. Then, based on this internal model, a fully distributed ETC strategy composed ofa distributed event-triggered adaptive output feedback control law and a distributed dynamic event-triggeringmechanism is proposed, in which each agent updates its control input at its own triggering time instants. It isshown that under the proposed ETC strategy, the robust cooperative output regulation problem can be solvedwithout requiring either the global information associated with the communication topology or the bounds ofthe uncertain or unknown parameters in each agent and the exosystem. A numerical example is provided toillustrate the effectiveness of the proposed control strategy.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
文摘This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs)with randomly switching topologies and nonuniform distributed delays.By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration,a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders'states.A novel distributed output feedback containment controller is then designed without using the prior knowledge of distributed delays.By constructing a novel switching Lyapunov functional,the output containment control problem is then solved in the sense of mean square under an easily-verifiable sufficient condition.Finally,two numerical examples are given to show the effectiveness of the proposed controller.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
文摘In Niger, a landlocked country, sorghum is the second staple food cultivated over the country by smallholder farmer. The crop is important for human and animal consumption. Despite its importance, the crop is affected by biotic and abiotic constraints. Among those constraints, striga has a high impact on yield. In fact, to survive, farmers are growing their local preferred sorghum varieties wish is highly sensible to the weed. Striga management is a challenge that requires a permanent solution. In addition, the development of high-yielding Striga resistant genotypes will be appreciated by farmers. The development of striga resistance will be based on the breeding population performances under farmer’s diverse environmental conditions adaptation. The main objective of this study is to evaluate two breeding populations for striga resistance in two different environments at Boulke and Dibissou in Tahoua region, to identify the early and high-yielding striga tolerant genotypes under natural infestation.
文摘Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.
基金supported in part by the National Natural Science Foundation of China(61933012,62273064,61991400,61991403,62250710167,61860206008,62203078)the National Key Research and Development Program of China(2023YFA1011803)+2 种基金the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Innovation Support Program for Inter national Students Returning to China(cx2022016)the Central University Project(2022CDJKYJH019).
文摘It is interesting yet nontrivial to achieve given control precision within user-assignable time for uncertain nonlinear systems.The underlying problem becomes even more challenging if the transient behavior also needs to be accommodated and only system output is available for feedback.Several key design innovations are proposed to circumvent the aforementioned technical difficulties,including the employment of state estimation filters with event-triggered mechanism,the construction of a novel performance scaling function and an error transformation.In contrast to most existing performance based works where the stability is contingent on initial conditions and the maximum allowable steady-state tracking precision can only be guaranteed at some unknown(theoretically infinite)time,in this work the output of the system is ensured to synchronize with the desired trajectory with arbitrarily pre-assignable convergence rate and arbitrarily pre-specified precision within prescribed time,using output only with lower cost of sensing and communication.In addition,all the closed-loop signals are ensured to be globally uniformly bounded under the proposed control method.The merits of the designed control scheme are confirmed by numerical simulation on a ship model.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R503),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis(MS),a chronic autoimmune neurological condition.It disrupts signals between the brain and body,causing symptoms including tiredness,muscle weakness,and difficulty with memory and balance.Traditional methods for detecting MS are less precise and time-consuming,which is a major gap in addressing this problem.This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy.This paper proposed a novel approach named FAD consisting of Deep Neural Network(DNN)fused with an Artificial Neural Network(ANN)to detect MS with more efficiency and accuracy,utilizing regularization and combat over-fitting.We use gene expression data for MS research in the GEO GSE17048 dataset.The dataset is preprocessed by performing encoding,standardization using min-max-scaler,and feature selection using Recursive Feature Elimination with Cross-Validation(RFECV)to optimize and refine the dataset.Meanwhile,for experimenting with the dataset,another deep-learning hybrid model is integrated with different ML models,including Random Forest(RF),Gradient Boosting(GB),XGBoost(XGB),K-Nearest Neighbors(KNN)and Decision Tree(DT).Results reveal that FAD performed exceptionally well on the dataset,which was evident with an accuracy of 96.55%and an F1-score of 96.71%.The use of the proposed FAD approach helps in achieving remarkable results with better accuracy than previous studies.
基金National Natural Science Foundation of China,Grant/Award Number:61872171The Belt and Road Special Foundation of the State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering,Grant/Award Number:2021490811。
文摘Multi‐agent reinforcement learning relies on reward signals to guide the policy networks of individual agents.However,in high‐dimensional continuous spaces,the non‐stationary environment can provide outdated experiences that hinder convergence,resulting in ineffective training performance for multi‐agent systems.To tackle this issue,a novel reinforcement learning scheme,Mutual Information Oriented Deep Skill Chaining(MioDSC),is proposed that generates an optimised cooperative policy by incorporating intrinsic rewards based on mutual information to improve exploration efficiency.These rewards encourage agents to diversify their learning process by engaging in actions that increase the mutual information between their actions and the environment state.In addition,MioDSC can generate cooperative policies using the options framework,allowing agents to learn and reuse complex action sequences and accelerating the convergence speed of multi‐agent learning.MioDSC was evaluated in the multi‐agent particle environment and the StarCraft multi‐agent challenge at varying difficulty levels.The experimental results demonstrate that MioDSC outperforms state‐of‐the‐art methods and is robust across various multi‐agent system tasks with high stability.
基金The project was supported by the National Natural Science Foundation of China(Grant No.42204122).
文摘There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
基金supported in part by the National Science Fund for Excellent Young Scholars of China(62222317)the National Science Foundation of China(62303492)+3 种基金the Major Science and Technology Projects in Hunan Province(2021GK1030)the Science and Technology Innovation Program of Hunan Province(2022WZ1001)the Key Research and Development Program of Hunan Province(2023GK2023)the Fundamental Research Funds for the Central Universities of Central South University(2024ZZTS0116)。
文摘This paper presents an asynchronous output-feed-back control strategy of semi-Markovian systems via sliding mode-based learning technique.Compared with most literature results that require exact prior knowledge of system state and mode information,an asynchronous output-feedback sliding sur-face is adopted in the case of incompletely available state and non-synchronization phenomenon.The holonomic dynamics of the sliding mode are characterized by a descriptor system in which the switching surface is regarded as the fast subsystem and the system dynamics are viewed as the slow subsystem.Based upon the co-occurrence of two subsystems,the sufficient stochastic admissibility criterion of the holonomic dynamics is derived by utilizing the characteristics of cumulative distribution functions.Furthermore,a recursive learning controller is formulated to guarantee the reachability of the sliding manifold and realize the chattering reduction of the asynchronous switching and sliding motion.Finally,the proposed theoretical method is substantia-ted through two numerical simulations with the practical contin-uous stirred tank reactor and F-404 aircraft engine model,respectively.
基金Sponsored by the Ministry of Industry and Information Technology of China(Grant No.MIIT[2019]359)。
文摘This paper focuses on the optimization method for multi-skilled painting personnel scheduling.The budget working time analysis is carried out considering the influence of operating area,difficulty of spraying area,multi-skilled workers,and worker’s efficiency,then a mathematical model is established to minimize the completion time. The constraints of task priority,paint preparation,pump management,and neighbor avoidance in the ship block painting production are considered. Based on this model,an improved scatter search(ISS)algorithm is designed,and the hybrid approximate dynamic programming(ADP)algorithm is used to improve search efficiency. In addition,the two solution combination methods of path-relinking and task sequence combination are used to enhance the search breadth and depth. The numerical experimental results show that ISS has a significant advantage in solving efficiency compared with the solver in small scale instances;Compared with the scatter search algorithm and genetic algorithm,ISS can stably improve the solution quality. Verified by the production example,ISS effectively shortens the total completion time of the production,which is suitable for scheduling problems in the actual painting production of the shipyard.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.