The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect anal...In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
Quantitative headspace analysis of volatiles emitted by plants or any other living organisms in chemical ecology studies generates large multidimensional data that require extensive mining and refining to extract usef...Quantitative headspace analysis of volatiles emitted by plants or any other living organisms in chemical ecology studies generates large multidimensional data that require extensive mining and refining to extract useful information. More often the number of variables and the quantified volatile compounds exceed the number of observations or samples and hence many traditional statistical analysis methods become inefficient. Here, we employed machine learning algorithm, random forest (RF) in combination with distance-based procedure, similarity percentage (SIMPER) as preprocessing steps to reduce the data dimensionality in the chemical profiles of volatiles from three African nightshade plant species before subjecting the data to non-metric multidimensional scaling (NMDS). In addition, non-parametric methods namely permutational multivariate analysis of variance (PERMANOVA) and analysis of similarities (ANOSIM) were applied to test hypothesis of differences among the African nightshade species based on the volatiles profiles and ascertain the patterns revealed by NMDS plots. Our results revealed that there were significant differences among the African nightshade species when the data’s dimension was reduced using RF variable importance and SIMPER, as also supported by NMDS plots that showed S. scabrum being separated from S. villosum and S. sarrachoides based on the reduced data variables. The novelty of our work is on the merits of using data reduction techniques to successfully reveal differences in groups which could have otherwise not been the case if the analysis were performed on the entire original data matrix characterized by small samples. The R code used in the analysis has been shared herein for interested researchers to customise it for their own data of similar nature.展开更多
This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th...This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.展开更多
The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in...The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.展开更多
Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this pape...Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.展开更多
This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed...The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe...To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.展开更多
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金the Science and Technology Project of State Grid Corporation of China under Grant No.5700-202318292A-1-1-ZN.
文摘In smart classrooms, conducting multi-face expression recognition based on existing hardware devices to assessstudents’ group emotions can provide educators with more comprehensive and intuitive classroom effect analysis,thereby continuouslypromotingthe improvementof teaching quality.However,most existingmulti-face expressionrecognition methods adopt a multi-stage approach, with an overall complex process, poor real-time performance,and insufficient generalization ability. In addition, the existing facial expression datasets are mostly single faceimages, which are of low quality and lack specificity, also restricting the development of this research. This paperaims to propose an end-to-end high-performance multi-face expression recognition algorithm model suitable forsmart classrooms, construct a high-quality multi-face expression dataset to support algorithm research, and applythe model to group emotion assessment to expand its application value. To this end, we propose an end-to-endmulti-face expression recognition algorithm model for smart classrooms (E2E-MFERC). In order to provide highqualityand highly targeted data support for model research, we constructed a multi-face expression dataset inreal classrooms (MFED), containing 2,385 images and a total of 18,712 expression labels, collected from smartclassrooms. In constructing E2E-MFERC, by introducing Re-parameterization visual geometry group (RepVGG)block and symmetric positive definite convolution (SPD-Conv) modules to enhance representational capability;combined with the cross stage partial network fusion module optimized by attention mechanism (C2f_Attention),it strengthens the ability to extract key information;adopts asymptotic feature pyramid network (AFPN) featurefusion tailored to classroomscenes and optimizes the head prediction output size;achieves high-performance endto-end multi-face expression detection. Finally, we apply the model to smart classroom group emotion assessmentand provide design references for classroom effect analysis evaluation metrics. Experiments based on MFED showthat the mAP and F1-score of E2E-MFERC on classroom evaluation data reach 83.6% and 0.77, respectively,improving the mAP of same-scale You Only Look Once version 5 (YOLOv5) and You Only Look Once version8 (YOLOv8) by 6.8% and 2.5%, respectively, and the F1-score by 0.06 and 0.04, respectively. E2E-MFERC modelhas obvious advantages in both detection speed and accuracy, which can meet the practical needs of real-timemulti-face expression analysis in classrooms, and serve the application of teaching effect assessment very well.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.
文摘Quantitative headspace analysis of volatiles emitted by plants or any other living organisms in chemical ecology studies generates large multidimensional data that require extensive mining and refining to extract useful information. More often the number of variables and the quantified volatile compounds exceed the number of observations or samples and hence many traditional statistical analysis methods become inefficient. Here, we employed machine learning algorithm, random forest (RF) in combination with distance-based procedure, similarity percentage (SIMPER) as preprocessing steps to reduce the data dimensionality in the chemical profiles of volatiles from three African nightshade plant species before subjecting the data to non-metric multidimensional scaling (NMDS). In addition, non-parametric methods namely permutational multivariate analysis of variance (PERMANOVA) and analysis of similarities (ANOSIM) were applied to test hypothesis of differences among the African nightshade species based on the volatiles profiles and ascertain the patterns revealed by NMDS plots. Our results revealed that there were significant differences among the African nightshade species when the data’s dimension was reduced using RF variable importance and SIMPER, as also supported by NMDS plots that showed S. scabrum being separated from S. villosum and S. sarrachoides based on the reduced data variables. The novelty of our work is on the merits of using data reduction techniques to successfully reveal differences in groups which could have otherwise not been the case if the analysis were performed on the entire original data matrix characterized by small samples. The R code used in the analysis has been shared herein for interested researchers to customise it for their own data of similar nature.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803903)the National Natural Science Foundation of China(Grant No.62003182)。
文摘This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.
基金supported by the National Key R&D Program of China grant(2017YFC0603105).
文摘The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.
基金Yibin University Pre-research Project,Research on the coupling and coordinated development ofmanufacturing and logistics industry under the background of intelligentmanufacturing,(2022YY001)Sichuan ProvincialDepartment of EducationWater Transport EconomicResearch Center,Research on the Development Path and Countermeasures of the Advanced Manufacturing Industry in the Sanjiang New District of Yibin under a“dual circulation”development pattern(SYJJ2020A06).
文摘Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
基金Project supported by the Graduate Student Research Innovation Project of Chongqing(Grant No.CYS22482)the National Natural Science Foundation of China(Grant No.61773082)+1 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202000601)the Research Program of Chongqing Talent,China(Grant No.cstc2021ycjhbgzxm0044).
文摘The problem of fixed-time group consensus for second-order multi-agent systems with disturbances is investigated.For cooperative-competitive network,two different control protocols,fixed-time group consensus and fixed-time eventtriggered group consensus,are designed.It is demonstrated that there is no Zeno behavior under the designed eventtriggered control.Meanwhile,it is proved that for an arbitrary initial state of the system,group consensus within the settling time could be obtained under the proposed control protocols by using matrix analysis and graph theory.Finally,a series of numerical examples are propounded to illustrate the performance of the proposed control protocol.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金funding of the National Key Research and Development Plan(Grant 2017YFB0306600)the Project of SINOPEC(NO.117006).
文摘To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases.