Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance ener...Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance energy-aware control method is proposed for performing coverage task of RSVs. Firstly, a centroidal Voronoi tessellation(CVT) is used to optimize the partition of the given coverage area.展开更多
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective o...This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro...This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.展开更多
The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens...The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.展开更多
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy sup...Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.展开更多
Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives...Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives of regular and adversarial patrolling.Regular patrolling requires robots to visit important locations as frequently as possible and a series of deterministic strategies are proposed,while adversarial one focuses on unpredictable robots’moving patterns to maximize adversary detection probability.Under each category,a systematic survey is done including problem statements and modeling,patrolling objectives and evaluation criteria,and representative patrolling strategies and approaches.Existing problems and open questions are presented accordingly.展开更多
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati...Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.展开更多
Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments...Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces.展开更多
Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path ...Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.展开更多
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation...Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.展开更多
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.Th...During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg.展开更多
To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforc...To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.展开更多
Multilegged robots have the potential to serve as assistants for humans,replacing them in performing dangerous,dull,or unclean tasks.However,they are still far from being sufficiently versatile and robust for many app...Multilegged robots have the potential to serve as assistants for humans,replacing them in performing dangerous,dull,or unclean tasks.However,they are still far from being sufficiently versatile and robust for many applications.This paper addresses key points that might yield breakthroughs for highly dynamic multilegged robots with the abilities of running(or jumping and hopping)and self-balancing.First,21 typical multilegged robots from the last five years are surveyed,and the most impressive performances of these robots are presented.Second,current developments regarding key technologies of highly dynamic multilegged robots are reviewed in detail.The latest leg mechanisms with serial-parallel hybrid topologies and rigid–flexible coupling configurations are analyzed.Then,the development trends of three typical actuators,namely hydraulic,quasi-direct drive,and serial elastic actuators,are discussed.After that,the sensors and modeling methods used for perception are surveyed.Furthermore,this paper pays special attention to the review of control approaches since control is a great challenge for highly dynamic multilegged robots.Four dynamics-based control methods and two model-free control methods are described in detail.Third,key open topics of future research concerning the mechanism,actuation,perception,and control of highly dynamic multilegged robots are proposed.This paper reviews the state of the art development for multilegged robots,and discusses the future trend of multilegged robots.展开更多
Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and workin...Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and working principle; describes the operating method and how to develop competition strategy, and refers to the teams to take part in FIRA Robot World Cup China 2001 and investigators who are interested in the distributed multi agent system.展开更多
The unmanned warehouse dispatching system of the‘goods to people’model uses a structure mainly based on a handling robot,which saves considerable manpower and improves the efficiency of the warehouse picking operati...The unmanned warehouse dispatching system of the‘goods to people’model uses a structure mainly based on a handling robot,which saves considerable manpower and improves the efficiency of the warehouse picking operation.However,the optimal performance of the scheduling system algorithm has high requirements.This study uses a deep Q-network(DQN)algorithm in a deep reinforcement learning algorithm,which combines the Q-learning algorithm,an empirical playback mechanism,and the volume-based technology of productive neural networks to generate target Q-values to solve the problem of multi-robot path planning.The aim of the Q-learning algorithm in deep reinforcement learning is to address two shortcomings of the robot path-planning problem:slow convergence and excessive randomness.Preceding the start of the algorithmic process,prior knowledge and prior rules are used to improve the DQN algorithm.Simulation results show that the improved DQN algorithm converges faster than the classic deep reinforcement learning algorithm and can more quickly learn the solutions to path-planning problems.This improves the efficiency of multi-robot path planning.展开更多
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金supported in part by the National Natural Science Foundation of China (51939001,52301408)the National Science and Technology Major Project (2022ZD0119 902)+2 种基金the Key Basic Research of Dalian (2023JJ11CG008)the Dalian Science and Technology Innovation Fund (2022JJ12GX034)the Dalian Outstanding Young Scientific and Technological Talents Project (2022RY07)。
文摘Dear Editor,This letter addresses long duration coverage problem of multiple robotic surface vehicles(RSVs) subject to battery energy constraints,in addition to uncertainties and disturbances. An anti-disturbance energy-aware control method is proposed for performing coverage task of RSVs. Firstly, a centroidal Voronoi tessellation(CVT) is used to optimize the partition of the given coverage area.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
文摘This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II(Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II)for solving complex multiobjective optimization problems,with a particular focus on robotic leg-linkage design.The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II,aiming to enhance the efficiency and precision of the optimization process.Through a series of empirical experiments and algorithmic analyses,the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from direct experimental methods,underscoring the algorithm’s capability to accurately approximate the Pareto-optimal frontier while significantly reducing computational demands.The methodology encompasses a detailed exploration of the algorithm’s configuration,the experimental setup,and the criteria for performance evaluation,ensuring the reproducibility of results and facilitating future advancements in the field.The findings of this study not only confirm the practical applicability and theoretical soundness of the DeepSurNet-NSGA II in navigating the intricacies of multi-objective optimization but also highlight its potential as a transformative tool in engineering and design optimization.By bridging the gap between complex optimization challenges and achievable solutions,this research contributes valuable insights into the optimization domain,offering a promising direction for future inquiries and technological innovations.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
文摘This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.
文摘The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2015AA015403)the National Natural Science Foundation of China(61404069,61401185)the Project of Education Department of Liaoning Province(LJYL052)
文摘Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals.
基金supported in part by the International Collaborative Project of the Shanghai Committee of Science and Technology(16510711100)National Natural Science Foundation of China(61603090,61806051)+2 种基金the Fundamental Research Funds for the Central Universities(2232017D-08,2232017D-13)Shanghai Sailing Program(17YF1426100)by FDCT(Fundo para o Desenvolvimento das Ciencias e da Tecnologia)(119/2014/A3)
文摘Multi-robot systems can be applied to patrol a concerned environment for security purposes.According to different goals,this work reviews the existing researches in a multi-robot patrolling field from the perspectives of regular and adversarial patrolling.Regular patrolling requires robots to visit important locations as frequently as possible and a series of deterministic strategies are proposed,while adversarial one focuses on unpredictable robots’moving patterns to maximize adversary detection probability.Under each category,a systematic survey is done including problem statements and modeling,patrolling objectives and evaluation criteria,and representative patrolling strategies and approaches.Existing problems and open questions are presented accordingly.
基金Supported by National Natural Science Foundation of China(Grant No.51175029)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)
文摘Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements.
文摘Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces.
文摘Soccer robot system is a tremendously challenging intelligent system developed to mimic human soccer competition based on the multi discipline research: robotics, intelligent control, computer vision, etc. robot path planning strategy is a very important subject concerning to the performance and intelligence degree of the multi robot system. Therefore, this paper studies the path planning strategy of soccer system by using fuzzy logic. After setting up two fuzziers and two sorts of fuzzy rules for soccer system, fuzzy logic is applied to workspace partition and path revision. The experiment results show that this technique can well enhance the performance and intelligence degree of the system.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675079,50875246)Program for Innovative Research Team (in Science and Technology) in University of Henan Province,China
文摘Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward.
基金supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(51221004)the National Natural Science Foundation of China(11172260,11372270,and 51375434)+2 种基金the Higher School Specialized Research Fund for the Doctoral Program(20110101110016)the Science and technology project of Zhejiang Province(2013C31086)the Fundamental Research Funds forthe Central Universities of China(2013XZZX005)
文摘During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg.
基金supported by the National Natural Science Foundations of China(Nos.5157051626,51475225)
文摘To fulfill the demands for higher quality,efficiency and flexibility in aviation industry,a multi-functional end effector is designed to automate the drilling and riveting processes in assembling carbon fiber reinforced polymer(CFRP)and aluminum components for a robotic aircraft assembly system.To meet the specific functional requirements for blind rivet installation on CFRP and aluminum materials,additional modules are incorporated on the end effector aside of the basic processing modules for drilling.And all of these processing modules allow for a onestep-drilling-countersinking process,hole inspection,automatic rivet feed,rivet geometry check,sealant application,rivet insertion and installation.Besides,to guarantee the better quality of the hole drilled and joints riveted,several online detection and adjustment measures are applied to this end effector,including the reference detection and perpendicular calibration,which could effectively ensure the positioning precision and perpendicular accuracy as demanded.Finally,the test result shows that this end effector is capable of producing each hole to a positioning precision within ±0.5 mm,aperpendicular accuracy within 0.3°,a diameter tolerance of H8,and a countersink depth tolerance of±0.01 mm.Moreover,it could drill and rivet up to three joints per minute,with acceptable shearing and tensile strength.
基金Supported by National Natural Science Foundation of China(Grant Nos.51575337,U1613208)Equipment Pre-research Aerospace Joint Fund(Grant No.6141B06220407)Key Laboratory Fund of Science and Technology on Space Intelligent Control(Grant No.HTKJ2019KL502011).
文摘Multilegged robots have the potential to serve as assistants for humans,replacing them in performing dangerous,dull,or unclean tasks.However,they are still far from being sufficiently versatile and robust for many applications.This paper addresses key points that might yield breakthroughs for highly dynamic multilegged robots with the abilities of running(or jumping and hopping)and self-balancing.First,21 typical multilegged robots from the last five years are surveyed,and the most impressive performances of these robots are presented.Second,current developments regarding key technologies of highly dynamic multilegged robots are reviewed in detail.The latest leg mechanisms with serial-parallel hybrid topologies and rigid–flexible coupling configurations are analyzed.Then,the development trends of three typical actuators,namely hydraulic,quasi-direct drive,and serial elastic actuators,are discussed.After that,the sensors and modeling methods used for perception are surveyed.Furthermore,this paper pays special attention to the review of control approaches since control is a great challenge for highly dynamic multilegged robots.Four dynamics-based control methods and two model-free control methods are described in detail.Third,key open topics of future research concerning the mechanism,actuation,perception,and control of highly dynamic multilegged robots are proposed.This paper reviews the state of the art development for multilegged robots,and discusses the future trend of multilegged robots.
文摘Presents the robot soccer software simulation platform to be firstly used at FIRA Robot World Cup China 2001, introduces the system’s purpose and design plan; discusses the system core server configuration and working principle; describes the operating method and how to develop competition strategy, and refers to the teams to take part in FIRA Robot World Cup China 2001 and investigators who are interested in the distributed multi agent system.
基金This research has been supported by Yueqi Youth Scholar Funding of China University of Mining and Technology(Beijing)the Major Programme of the National Natural Science Foundation of China(No.71831001).
文摘The unmanned warehouse dispatching system of the‘goods to people’model uses a structure mainly based on a handling robot,which saves considerable manpower and improves the efficiency of the warehouse picking operation.However,the optimal performance of the scheduling system algorithm has high requirements.This study uses a deep Q-network(DQN)algorithm in a deep reinforcement learning algorithm,which combines the Q-learning algorithm,an empirical playback mechanism,and the volume-based technology of productive neural networks to generate target Q-values to solve the problem of multi-robot path planning.The aim of the Q-learning algorithm in deep reinforcement learning is to address two shortcomings of the robot path-planning problem:slow convergence and excessive randomness.Preceding the start of the algorithmic process,prior knowledge and prior rules are used to improve the DQN algorithm.Simulation results show that the improved DQN algorithm converges faster than the classic deep reinforcement learning algorithm and can more quickly learn the solutions to path-planning problems.This improves the efficiency of multi-robot path planning.
基金supported by National Natural Science Foundation of China(61305134)Specialized Research Fund for the Doctoral Program of Higher Education(20133219120035)