Eight novel heterocycle-substituted dihydropyrazole derivatives were synthesized and characterized by ESI-MS, ^1H NMR and ^13C NMR. All of the compounds have been screened for their antibacterial potential in vitro ag...Eight novel heterocycle-substituted dihydropyrazole derivatives were synthesized and characterized by ESI-MS, ^1H NMR and ^13C NMR. All of the compounds have been screened for their antibacterial potential in vitro against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results show that compounds 9b, 9g and 9h displayed significant activity with MIC values in the range of 0.39-1.562 μlmL against B. subtilis.展开更多
In next generation networks, multiradio networks are emerging in order to deal with exponential data traffic increasing. Integrated Femto-WiFi(IFW) small cells have been introduced by 3GPP to offload data from cellula...In next generation networks, multiradio networks are emerging in order to deal with exponential data traffic increasing. Integrated Femto-WiFi(IFW) small cells have been introduced by 3GPP to offload data from cellular networks recently. These IFW cells are multi-mode capable(i.e., both licensed bands via cellular interface and unlicensed bands via WiFi interface). Therefore how to offload data effectively has become one of the most significant discussions in 5G Multi-Radio Heterogeneous Network. So far, most researches mainly focus on the generality of UEs, few attention has been paid to UEs' individual requirements. Considering UE's preference vary from individual to individual, in this paper, we present an UE preference-aware network selection scheme for mobile data offloading. It intelligently supports the distribution of heterogeneous classes of services, considers different types of UEs and delay-tolerant flows, and handles the mobility of UEs. The simulation results show the superiority of the proposed algorithm in user fairness, enhanced capacity and energy saving maximization.展开更多
We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility ...We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility that electrons in such an SC may also be bound via simultaneous exchanges of quanta with more than one ion-species—a lacuna which is addressed by the Generalized BCS Equations (GBCSEs). Based on several papers, we give a concise account of how this approach: 1) despite employing a single band, meets the criteria satisfied by MBA because a) GBCSEs are derived from a temperature-incorporated Bethe-Salpeter Equation the kernel of which is taken to be a “superpropagator” for a composite SC-each ion-species of which is distinguished by its own Debye temperature and interaction parameter and b) the band overlapping the Fermi surface is allowed to be of variable width. GBCSEs so-obtained reduce to the usual equations for the Tc and Δ of an elemental SC in the limit superpropagator → 1-phonon propagator;2) accommodates moving Cooper pairs and thereby extends the scope of the original BCS theory which restricts the Hamiltonian at the outset to terms that correspond to pairs having zero centre-of-mass momentum. One can now derive an equation for the critical current density (j0) of a composite SC at T = 0 in terms of the Debye temperatures of its ions and their interaction parameters— parameters that also determine its Tc and Δs;3) transforms the problem of optimizing j0 of a composite SC, and hence its Tc, into a problem of chemical engineering;4) provides a common canopy for most composite SCs, including those that are usually regarded as outside the purview of the BCS theory and have therefore been called “exceptional”, e.g., the heavy-fermion SCs;5) incorporates s±-wave superconductivity as an in-built feature and can therefore deal with the iron-based SCs, and 6) leads to presumably verifiable predictions for the values of some relevant parameters, e.g., the effective mass of electrons, for the SCs for which it has been employed.展开更多
基金the opening foundation of the Key Laboratory of Green Pesticide and Agricultural Bioengineering,Ministry of Education,Guizhou University,(No.2008GDGP0105)supported by the Young College Teachers Research Projects of Anhui Province(No.2008JQ1030)the Young College Teachers Research Projects of Anhui University of Technology(No.QZ200809).
文摘Eight novel heterocycle-substituted dihydropyrazole derivatives were synthesized and characterized by ESI-MS, ^1H NMR and ^13C NMR. All of the compounds have been screened for their antibacterial potential in vitro against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The results show that compounds 9b, 9g and 9h displayed significant activity with MIC values in the range of 0.39-1.562 μlmL against B. subtilis.
文摘In next generation networks, multiradio networks are emerging in order to deal with exponential data traffic increasing. Integrated Femto-WiFi(IFW) small cells have been introduced by 3GPP to offload data from cellular networks recently. These IFW cells are multi-mode capable(i.e., both licensed bands via cellular interface and unlicensed bands via WiFi interface). Therefore how to offload data effectively has become one of the most significant discussions in 5G Multi-Radio Heterogeneous Network. So far, most researches mainly focus on the generality of UEs, few attention has been paid to UEs' individual requirements. Considering UE's preference vary from individual to individual, in this paper, we present an UE preference-aware network selection scheme for mobile data offloading. It intelligently supports the distribution of heterogeneous classes of services, considers different types of UEs and delay-tolerant flows, and handles the mobility of UEs. The simulation results show the superiority of the proposed algorithm in user fairness, enhanced capacity and energy saving maximization.
文摘We trace the conceptual basis of the Multi-Band Approach (MBA) and recall the reasons for its wide following for composite superconductors (SCs). Attention is then drawn to a feature that MBA ignores: the possibility that electrons in such an SC may also be bound via simultaneous exchanges of quanta with more than one ion-species—a lacuna which is addressed by the Generalized BCS Equations (GBCSEs). Based on several papers, we give a concise account of how this approach: 1) despite employing a single band, meets the criteria satisfied by MBA because a) GBCSEs are derived from a temperature-incorporated Bethe-Salpeter Equation the kernel of which is taken to be a “superpropagator” for a composite SC-each ion-species of which is distinguished by its own Debye temperature and interaction parameter and b) the band overlapping the Fermi surface is allowed to be of variable width. GBCSEs so-obtained reduce to the usual equations for the Tc and Δ of an elemental SC in the limit superpropagator → 1-phonon propagator;2) accommodates moving Cooper pairs and thereby extends the scope of the original BCS theory which restricts the Hamiltonian at the outset to terms that correspond to pairs having zero centre-of-mass momentum. One can now derive an equation for the critical current density (j0) of a composite SC at T = 0 in terms of the Debye temperatures of its ions and their interaction parameters— parameters that also determine its Tc and Δs;3) transforms the problem of optimizing j0 of a composite SC, and hence its Tc, into a problem of chemical engineering;4) provides a common canopy for most composite SCs, including those that are usually regarded as outside the purview of the BCS theory and have therefore been called “exceptional”, e.g., the heavy-fermion SCs;5) incorporates s±-wave superconductivity as an in-built feature and can therefore deal with the iron-based SCs, and 6) leads to presumably verifiable predictions for the values of some relevant parameters, e.g., the effective mass of electrons, for the SCs for which it has been employed.