An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attr...An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of deci...The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.展开更多
An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes a...An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.展开更多
Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) mod...Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators展开更多
The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic secur...The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.展开更多
Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain univers...Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain university as samples, this paper, with the information system security assessment model as its foundation, proposes a multi-attribute group decision-making (MAGDM) security assessment method based on a variable consistency dominance-based rough set approach (VC-DRSA). This assessment method combines VC-DRSA with the analytic hierarchy process (AHP), uncovers the inherent information hidden in data via the quality of sorting (QoS), and makes a synthetic security assessment of the information system after determining the security attribute weight. The sample findings show that this method can effectively remove the bottleneck of MAGDM, thus assuming practical significance in information system security assessment.展开更多
Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neith...Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.展开更多
In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group dec...In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.展开更多
Considering the environment of risks and influences inherent in the decision-making process for credit-granting operations,it has become a matter of survival for financial organizations to seek to improve how they eng...Considering the environment of risks and influences inherent in the decision-making process for credit-granting operations,it has become a matter of survival for financial organizations to seek to improve how they engage in effective decision-making to ensure that their returns on invested capital will meet the expectations established at the beginning of the process.A credit-granting sorting model for financial organizations is proposed.The model aggregates the perspectives of different decision-makers to support an organization in the process of credit analysis and,consequently,to improve its operationality.The decision-making model is based on the ELECTRE TRI-B multicriteria method.It sorts credit-granting proposals into three classes,namely credit approved,technical analysis,and credit rejected.The group decision emerges from the decision rules of the organization’s executive board.This new proposed approach to dealing with credit-granting results in the systematization of credit analysis,reduction of doubt among decision-makers,avoidance of the emergence of informal groups,reduction of conflicts within a financial organization,and external interferences.展开更多
文摘An integrated approach is proposed to investigate the fuzzy multi-attribute decision-making (MADM) problems, where subjective preferences are expressed by a pairwise comparison matrix on the relative weights of attributes and objective information is expressed by a decision matrix. An eigenvector method integrated the subjective fuzzy preference matrix and objective information is proposed. Two linear programming models based on subjective and objective information are introduced to assess the relative importance weights of attributes in an MADM problem. The simple additive weighting method is utilized to aggregate the decision information, and then all the alternatives are ranked. Finally, a numerical example is given to show the feasibility and effectiveness of the method. The result shows that it is easier than other methods of integrating subjective and objective information.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
基金Supported by 2023 Henan Provincial Department of Science and Technology Key R&D and Promotion Special Project(Soft Science Research)(232400411049)Henan Province Science and Technology Research and Development Plan Joint Fund(Industry)Project(225101610054)。
文摘The probabilistic hesitant fuzzy multi-attribute group decision-making method introduces probability and hesitation into decision-making problems at the same time,which can improve the reliability and accuracy of decision-making results,and has become a research hotspots in recent years.However,there are still many problems,such as overly complex calculations and difficulty in obtaining probability data.Based on these,the paper proposes a multi-attribute group decision-making model based on probability hesitant fuzzy soft sets.Firstly,the definition of probabilistic hesitant fuzzy soft set is given.Then,based on soft set theory and probabilistic hesitant fuzzy set,the similarity measure of probabilistic hesitant fuzzy soft set is proposed,and the two measures are further combined.Finally,it is applied to the construction of multi-attribute group decision-making model,and the effectiveness and rationality of the model are verified by an example.The example shows that the new similarity calculation formula and algorithm model in this paper have higher accuracy,and the calculation process is more simple,it provides a feasible method for multi-attribute group decision making problems.
基金supported by the National Natural Science Foundation of China (7087111770571086)
文摘An extended compromise ratio method(CRM) based on fuzzy distances is developed to solve fuzzy multi-attribute group decision making problems in which weights of attributes and ratings of alternatives on attributes are expressed with values of linguistic variables parameterized using triangular fuzzy numbers.A compromise solution is determined by introducing the ranking index based on the concept that the chosen alternative should be as close as possible to the positive ideal solution and as far away from the negative ideal solution as possible simultaneously.This proposed method is compared with other existing methods to show its feasibility and effectiveness and illustrated with an example of the military route selection problem as one of the possible applications.
文摘Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators
文摘The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.
基金Supported by the High Technology Research and Development Programme of China (No. 2007AA01Z473)
文摘Security assessment can help understand the security conditions of an information system and yield results highly conducive to the solution of security problems in it. Taking the computer networks in a certain university as samples, this paper, with the information system security assessment model as its foundation, proposes a multi-attribute group decision-making (MAGDM) security assessment method based on a variable consistency dominance-based rough set approach (VC-DRSA). This assessment method combines VC-DRSA with the analytic hierarchy process (AHP), uncovers the inherent information hidden in data via the quality of sorting (QoS), and makes a synthetic security assessment of the information system after determining the security attribute weight. The sample findings show that this method can effectively remove the bottleneck of MAGDM, thus assuming practical significance in information system security assessment.
文摘Although fuzzy set concepts have evolved,neutrosophic sets are attractingmore attention due to the greater power of the structure of neutrosophic sets.The ability to account for components that are true,false or neither true nor false is useful in the resolution of real-life problems.However,simultaneous variations render neutrosophic sets unsuitable in specific circumstances.To enable the management of these sorts of issues,we combine the principle of multi-valued neutrosophic uncertain linguistic sets and complex fuzzy sets to develop the principle of multivalued complex neutrosophic uncertain linguistic sets.Multi-valued complex neutrosophic uncertain linguistic sets can contain grades of truth,abstinence,and falsity,and uncertain linguistic terms,which are expressed as complex numbers whose real and imaginary parts are limited to the unit interval.Some important Dombi laws are elaborated along with Bonferroni mean operators,which offer a flexible general structure with modifiable factors.Bonferroni means aggregation operators perform a significant role in conveying the magnitude level of options and characteristics.To determine relationships among any number of attributes,we develop multi-valued complex neutrosophic uncertain linguistic Dombi-normalized weighted Bonferroni mean operators and discuss their important properties with some special cases.By using these laws,we can deploy themulti-attribute decisionmaking(MADM)technique using the novel principle of multi-valued complex neutrosophic uncertain linguistic sets.To determine the power and flexibility of the elaborated approach,we resolve some numerical examples based on the proposed operator.Finally,the work is validated with the help of comparative analysis,a discussion of its advantages,and geometric expressions of the elaborated theories.
基金Supported by the National Natural Science Foundation of China(No.60605019)
文摘In order to understand the security conditions of the incomplete interval-valued information system (IllS) and acquire the corresponding solution of security problems, this paper proposes a multi-attribute group decision- making (MAGDM) security assessment method based on the technique for order performance by similarity to ideal solution (TOPSIS). For IllS with preference information, combining with dominance-based rough set approach (DRSA), the effect of incomplete interval-valued information on decision results is discussed. For the imprecise judgment matrices, the security attribute weight can be obtained using Gibbs sampling. A numerical example shows that the proposed method can acquire some valuable knowledge hidden in the incomplete interval-valued information. The effectiveness of the proposed method in the synthetic security assessment for IIIS is verified.
基金Brazilian Research Council(CNPq)-Process:309143/2014-4。
文摘Considering the environment of risks and influences inherent in the decision-making process for credit-granting operations,it has become a matter of survival for financial organizations to seek to improve how they engage in effective decision-making to ensure that their returns on invested capital will meet the expectations established at the beginning of the process.A credit-granting sorting model for financial organizations is proposed.The model aggregates the perspectives of different decision-makers to support an organization in the process of credit analysis and,consequently,to improve its operationality.The decision-making model is based on the ELECTRE TRI-B multicriteria method.It sorts credit-granting proposals into three classes,namely credit approved,technical analysis,and credit rejected.The group decision emerges from the decision rules of the organization’s executive board.This new proposed approach to dealing with credit-granting results in the systematization of credit analysis,reduction of doubt among decision-makers,avoidance of the emergence of informal groups,reduction of conflicts within a financial organization,and external interferences.