期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Three-dimensional Tool Radius Compensation for Multi-axis Peripheral Milling 被引量:6
1
作者 CHEN Youdong WANG Tianmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期547-554,共8页
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the c... Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUTwith different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of threeto five-axis machine tools as a general form. 展开更多
关键词 tool compensation multi-axis machine tool offset vector
下载PDF
Anisotropic Force Ellipsoid Based Multi-axis Motion Optimization of Machine Tools 被引量:2
2
作者 PENG Fangyu YAN Rong +2 位作者 CHEN Wei YANG Jianzhong LI Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期960-967,共8页
The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In... The existing research of the motion optimization of multi-axis machine tools is mainly based on geometric and kinematic constraints, which aim at obtaining minimum-time trajectories and finding obstacle-free paths. In motion optimization, the stiffness characteristics of the whole machining system, including machine tool and cutter, are not considered. The paper presents a new method to establish a general stiffness model of multi-axis machining system. An analytical stiffness model is established by Jacobi and point transformation matrix method. Based on the stiffness model, feed-direction stiffness index is calculated by the intersection of force ellipsoid and the cutting feed direction at the cutter tip. The stiffness index can help analyze the stiffness performance of the whole machining system in the available workspace. Based on the analysis of the stiffness performance, multi-axis motion optimization along tool paths is accomplished by mixed programming using Matlab and Visual C++. The effectiveness of the motion optimization method is verified by the experimental research about the machining performance of a 7-axis 5-linkage machine tool. The proposed research showed that machining stability and production efficiency can be improved by multi-axis motion optimization based on the anisotropic force ellipsoid of the whole machining system. 展开更多
关键词 STIFFNESS force ellipsoid multi-axis motion optimization
下载PDF
The development of real time data driving multi-axis linkage and synergic movement control system of 3D variable cross-section roll forming machine 被引量:2
3
作者 管延智 Li Qiang +2 位作者 Wang Haibo Yang Zhenfeng Zheng Yuting 《High Technology Letters》 EI CAS 2013年第3期261-266,共6页
The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential syn... The three dimensional variable cross-section roll forming is a kind of new metal forming technol- ogy which combines large forming force, multi-axis linkage movement and space synergic movement, and the sequential synergic movement of the ganged roller group is used to complete the metal sheet forming according to the shape of the complicated and variable forming part data. The control system should meet the demands of quick response to the test requirements of the product part. A new kind of real time data driving multi-axis linkage and synergic movement control strategy of 3D roll forming is put forward in the paper. In the new control strategy, the forming data are automatically generated according to the shape of the parts, and the multi-axis linkage movement together with cooperative motion among the six stands of the 3D roll forming machine is driven by the real-time information, and the control nodes are also driven by the forming data. The new control strategy is applied to a 48 axis 3D roll forming machine developed by our research center, and the control servo period is less than 10ms. A forming experiment of variable cross section part is carried out, and the forming preci- sion is better than + 0.5mm by the control strategy. The result of the experiment proves that the control strategy has significant potentiality for the development of 3D roll forming production line with large scale, multi-axis ganged and svner^ic movement 展开更多
关键词 real time data driving variable cross-section roll forming multi-axis ganged synergic movement
下载PDF
Design of a Multi-axis Motion Control Platform Based on LabVIEW’s Fuzzy Control Algorithm 被引量:4
4
作者 Chuang Li Yan Zhang 《Journal of Mechanics Engineering and Automation》 2021年第1期11-16,共6页
This paper presents a fuzzy control algorithm applied to the position control of a multi-axis motion platform to achieve high precision motion control of the multi-axis motion platform.A LabVIEW-based multi-axis motio... This paper presents a fuzzy control algorithm applied to the position control of a multi-axis motion platform to achieve high precision motion control of the multi-axis motion platform.A LabVIEW-based multi-axis motion control system is designed.This system controls stepper motors using trapezoidal acceleration/deceleration pulse types and fuzzy control algorithms,which effectively avoids mechanical jitter and loss of step in the process of multi-angle motion of the stepper motor,and achieves accurate control of the stepper motor.The TCP/IP(transmission control protocol/internet protocol)communication protocol is used,so that data are output stably and not lost in the process of transmission and communication,achieving the purpose of interconnection of different systems and remote control of equipment.This control system has been tested to maintain a high level of stability and repeatability during actual operation. 展开更多
关键词 LABVIEW stepper motors multi-axis linkage fuzzy algorithms TCP/IP communication.
下载PDF
Laser Interferometer Based Measurement for Positioning Error Compensation in Cartesian Multi-Axis Systems 被引量:1
5
作者 Y. Echerfaoui A. El Ouafi A. Chebak 《Journal of Analytical Sciences, Methods and Instrumentation》 2017年第3期75-92,共18页
Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely af... Accuracy is one of the most important key indices to evaluate multi-axis systems’ (MAS’s) characteristics and performances. The accuracy of MAS’s such as machine tools, measuring machines and robots is adversely affected by various error sources, including geometric imperfections, thermal deformations, load effects, and dynamic disturbances. The increasing demand for higher dimensional accuracy in various industrial applications has created the need to develop cost-effective methods for enhancing the overall performance of these mechanisms. Improving the accuracy of a MAS by upgrading the physical structure would lead to an exponential increase in manufacturing costs without totally eliminating geometrical deviations and thermal deformations of MAS components. Hence, the idea of reducing MAS’s error by a software-based alternative approach to provide real-time prediction and correction of geometric and thermally induced errors is considered a strategic step toward achieving the full potential of the MAS. This paper presents a structured approach designed to improve the accuracy of Cartesian MAS’s through software error compensation. Four steps are required to develop and implement this approach: (i) measurement of error components using a multidimensional laser interferometer system, (ii) tridimensional volumetric error mapping using rigid body kinematics, (iii) volumetric error prediction via an artificial neural network model, and finally (iv) implementation of the on-line error compensation. An illustrative example using a bridge type coordinate measuring machine is presented. 展开更多
关键词 multi-axis Machines Accuracy Enhancement Positioning ERROR PREDICTIVE Modelling ERROR COMPENSATION Laser INTERFEROMETER Artificial Neural Networks
下载PDF
Observation of tropospheric NO_2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region,south China
6
作者 徐晋 谢品华 +7 位作者 司福祺 李昂 吴丰成 王杨 刘建国 刘文清 Andreas Hartl Chan Ka Lok 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期247-251,共5页
An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining t... An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements. 展开更多
关键词 air pollution tropospheric NO2 airborne multi-axis differential optical absorption spectroscopy vertical column
下载PDF
DEVELOPMENT OF NEW GENERATION THERMOMECHANICAL SIMULATOR-MULTI-AXIS RESTRAINT COMPRESSION(MARC-STRAIN^(TM))SYSTEM
7
作者 D. Ferguon W. N. Chen and H. Ferguson (Dynamic Systems Inc. Poestenkill, NY 12140, USA) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期233-241,共9页
Ultrafine grain size is often achieved by severe plastic deformation. A few techniques have been devel- oped to achieve severe plastic deformation,such as equal channel angular (ECA ) processing, torsion, and accumu... Ultrafine grain size is often achieved by severe plastic deformation. A few techniques have been devel- oped to achieve severe plastic deformation,such as equal channel angular (ECA ) processing, torsion, and accumulative roll bonding (ARB) techmpues. This paper will introduce a moftiaxis deformation technique which can achieve essentially unlimited strain with constant deformation volume. The mul- tiaxis deformation can be fully restrained or unrestrained.The bulk volume of a multiaxis restraint compression specimen can be easily machined into mechanical testing specimens for mechanical property measurement and other studies. 展开更多
关键词 ultrafine grain thermomechanical simulator multi-axis restraint compression
下载PDF
Research on Contour Error Based on CNC Multi-axis Motion Control System
8
作者 SUN Jian-ren HU Chi-bing WANG Bao-min 《International Journal of Plant Engineering and Management》 2010年第2期125-128,共4页
The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion co... The contour error was analyzed based on CNC multi-axis motion control, the contour error model was obtained focused on beeline and different radius of curvature and common contour of curve, for a CNC biaxial motion control system and the mechanism of producing contour error and the relationship between tracking error and contour error were presented. The theoretical and practical significance of modeling error and controlling error in motion control systems was carried out. 展开更多
关键词 CNC multi-axis motion control contour error tracking error
下载PDF
A study on the application of diffuse axonal multi-axis general evaluation for braininjury assessment in small overlap barrier crash test
9
作者 Zhi Fu Yi Chang +3 位作者 Tao Xiong Wen-Kai Gao Kui Li Yu Liu 《Chinese Journal of Traumatology》 CAS CSCD 2024年第4期200-210,共11页
Purpose:Head injury criterion(HIC)companied by a rotation-based metric was widely believed to behelpful for head injury prediction in road traffic accidents.Recently,the Euro-New Car AssessmentProgram utilized a newly... Purpose:Head injury criterion(HIC)companied by a rotation-based metric was widely believed to behelpful for head injury prediction in road traffic accidents.Recently,the Euro-New Car AssessmentProgram utilized a newly developed metric called diffuse axonal multi-axis general evaluation(DAMAGE)to explain test device for human occupant restraint(THOR)head injury,which demonstratedexcellent ability in capturing concussions and diffuse axonal injuries.However,there is still a lack ofcomprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid III 50thpercentile male dummy(H50th)head injury assessment.The objective of this study is to determinewhether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.Methods:To achieve this objective,a total of 24 vehicle crash loading curves were collected as input datafor the multi-body simulation.Two commercially available mathematical dynamic models,namelyH50th and THOR,were utilized to investigate the differences in head injury response.Subsequently,adecision method known as simple additive weighting was employed to establish a comprehensive braininjury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion.Furthermore,35 sets of vehicle crash test data were used to analyze these brain injury metrics.Results:The rotational displacement of the THOR head is significantly greater than that of the H50thhead.The maximum linear and rotational head accelerations experienced by H50th and THOR modelswere(544.6±341.7)m/s^(2),(2468.2±1309.4)rad/s^(2) and(715.2±332.8)m/s^(2),(3778.7±1660.6)rad/s^(2),respectively.Under the same loading condition during small overlap barrier(SOB)tests,THOR exhibits ahigher risk of head injury compared to the H50th model.It was observed that the overall head injuryresponse during the small overlap left test condition is greater than that during the small overlap righttest.Additionally,an equation was formulated to establish the necessary relationship between theDAMAGE values of THOR and H50th.Conclusion:If H50th rather than THOR is employed as an evaluation tool in SOB crash tests,newlydesigned vehicles are more likely to achieve superior performance scores.According to the current injurycurve for DAMAGE and brain injury criterion,it is highly recommended that HIC along with DAMAGE wasprioritized for brain injury assessment in SOB tests. 展开更多
关键词 Diffuse axonal multi-axis general evaluation Head injury criterion Head injury assessment Small overlap barrier Biomechanical response
原文传递
Path Planning of Multi-Axis Robotic Arm Based on Improved RRT*
10
作者 Juanling Liang Wenguang Luo Yongxin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第10期1009-1027,共19页
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a... An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning. 展开更多
关键词 multi-axis robotic arm path planning improved RRT∗algorithm dynamic target deviation threshold dynamic step size path optimization
下载PDF
An approach to error elimination for multi-axis CNC machining and robot manipulation 被引量:4
11
作者 XIONG CaiHua 《Science China(Technological Sciences)》 SCIE EI CAS 2007年第5期560-574,共15页
The geometrical accuracy of a machined feature on a workpiece during machining processes is mainly affected by the kinematic chain errors of multi-axis CNC ma- chines and robots, locating precision of fixtures, and da... The geometrical accuracy of a machined feature on a workpiece during machining processes is mainly affected by the kinematic chain errors of multi-axis CNC ma- chines and robots, locating precision of fixtures, and datum errors on the work- piece. It is necessary to find a way to minimize the feature errors on the workpiece. In this paper, the kinematic chain errors are transformed into the displacements of the workpiece. The relationship between the kinematic chain errors and the dis- placements of the position and orientation of the workpiece is developed. A map- ping model between the displacements of workpieces and the datum errors, and adjustments of fixtures is established. The suitable sets of unit basis twists for each of the commonly encountered types of feature and the corresponding locating di- rections are analyzed, and an error elimination (EE) method of the machined feature is formulated. A case study is given to verify the EE method. 展开更多
关键词 error elimination multi-axis machine robot manipulation KINEMATIC chain TWIST
原文传递
Improvement of Electronic Line-shafting Control in Multi-axis Systems 被引量:4
12
作者 Chang-Fan Zhang Yuan-Yuan Xiao +1 位作者 Jing He Min Yan 《International Journal of Automation and computing》 EI CSCD 2018年第4期474-481,共8页
Electronic line-shafting (ELS) is the most popular control strategy for printing machines with shaftless drives. A sliding-mode controller for tracking control is designed in this study as the first step towards an ... Electronic line-shafting (ELS) is the most popular control strategy for printing machines with shaftless drives. A sliding-mode controller for tracking control is designed in this study as the first step towards an improved ELS control scheme. This controller can eliminate the negative effects on synchronization precision resulting from the friction at low speed present in the pre-registration step of a shaftless driven printing machine. Moreover, it can eliminate the synchronization error of the printing process resulting from nonlinearities and load disturbances. Based on observer techniques, the unknown components of load torque and system parameter variations are estimated. On this basis, a novel ELS control method using equivalent load-torque observers is proposed. Experimental results demonstrate the effectiveness of the proposed control system for four-axis position control. 展开更多
关键词 Shaftless drive sliding-mode controller NONLINEARITY OBSERVER SYNCHRONIZATION position control multi-axis system
原文传递
Simulation of multi-axis grinding considering runout based on envelope theory 被引量:2
13
作者 Yan JIANG Qiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3526-3534,共9页
As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spin... As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spindle axis do not coincide with each other due to wheel settings,machining errors and so on.This could result in the generation of wheel runout,which may reduce the machining surface's quality.In this paper,combining this phenomenon,an analytic algorithm method for the multi-axis grinding process is introduced according to the envelope theory.After that,the accuracy of this method is verified.Two experiments are carried out on a 5-axis machining center.The artificial runout is set up and calculated utilizing the least square method.Finally,using the presented method,two examples with and without runout are introduced to illustrate the validation of the proposed model.The error due to the runout effect is also analyzed. 展开更多
关键词 Analytic algorithm Complex surface Envelope theory multi-axis grinding Wheel runout
原文传递
Dynamic Modeling of Multi-axis Wrist Force Sensorin Time Domain
14
作者 徐科军 《Chinese Science Bulletin》 SCIE EI CAS 1994年第4期278-282,共5页
Multi-axis wrist force sensor is one of the most important sensors in the intelligentrobot. It measures the force and torque messages of three-dimensional space to ensurerobots to accomplish tasks with accuracy, such ... Multi-axis wrist force sensor is one of the most important sensors in the intelligentrobot. It measures the force and torque messages of three-dimensional space to ensurerobots to accomplish tasks with accuracy, such as mechanical assembling, precise grind-ing and outline trace. Its response speed must be high enough and its dynamic 展开更多
关键词 multi-axis WRIST FORCE SENSOR DYNAMIC modeling system identification time SERIES analysis.
原文传递
Microstructure and mechanical properties of isothermal multi-axial forging formed AZ61 Mg alloy 被引量:6
15
作者 夏祥生 陈明 +5 位作者 卢永进 樊富友 朱春华 黄静 邓天泉 朱世凤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3186-3192,共7页
Microstructure and mechanical properties of AZ61 Mg alloy during isothermal multi-axial forging (MAF) were studied. The mechanisms of grain refinement and relationship between the microstructures and mechanical prop... Microstructure and mechanical properties of AZ61 Mg alloy during isothermal multi-axial forging (MAF) were studied. The mechanisms of grain refinement and relationship between the microstructures and mechanical properties were discussed. The results show that the average grain size decreases with increasing the number of MAF passes. The grains are significantly refined at the 1st and 2nd MAF passes, and gradually refined at higher MAF passes. The initial grain size of 148 lam decreases to about 14 gm after 6 MAF passes. The grain refinement occurs mainly by continuous dynamic recrystallization. With increasing the MAF passes, both the tensile strength and the elongation to failure of the alloy are significantly enhanced. 展开更多
关键词 Mg alloy multi-axial forging microstructure mechanical properties
下载PDF
Dynamic precipitation during multi-axial forging of an Mg-7Gd-5Y-1Nd-0.5Zr alloy 被引量:2
16
作者 Ting Li Kui Zhang +4 位作者 Xinggang Li Zhiwei Du Yongjun Li Minglong Ma Guoliang Shi 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第1期47-53,共7页
The dynamic precipitation behavior during multi-axial forging in an Mg-7Gd-5Y-1Nd-0.5Zr alloy has been investigated and compared with that in static precipitation treatment. The results indicated that dynamic precipit... The dynamic precipitation behavior during multi-axial forging in an Mg-7Gd-5Y-1Nd-0.5Zr alloy has been investigated and compared with that in static precipitation treatment. The results indicated that dynamic precipitation does occur during multi-axial forging. The dynamic precipitate can be deduced as β phase with face-centered cubic crystal structure (a = 2.22 nm). Most of the β precipitates locate at the dynamic recrystallization grain boundaries. The morphology and orientation relationship is different from that of the β phase formed in the static precipitation treated alloys, although the crystal structure is the same. The precipitation temperature of β phase during MAF is higher than that in the static precipitation treatment. 展开更多
关键词 Magnesium alloy multi-axial forging Dynamic precipitation
下载PDF
Multi-axial strain-stiffening elastic potentials with energy bounds:explicit approach based on uniaxial data
17
作者 Lidan YU Tianfu JIN +1 位作者 Zhengnan YIN Heng XIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第7期883-894,共12页
According to the well-known models for rubberlike elasticity with strain- stii^ening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. To... According to the well-known models for rubberlike elasticity with strain- stii^ening effects, the unbounded strain energy is generated with the unlimitedly growing stress when the stretch approaches certain limits. Toward a solution to this issue, an explicit approach is proposed to derive the multi-axial elastic potentials directly from the uniaxial potentials. Then, a new multi-axial potential is presented to characterize the strain-stiffening effect by prescribing suitable forms of uniaxia] potentials so that the strain energy is always bounded as the stress grows to infinity. Numerical examples show good agreement with a number of test data. 展开更多
关键词 rubberlike elasticity strain limit strain-stiffening effect energy bound uniaxial data multi-axial potential
下载PDF
串并联机器人控制HIFU的插补算法的研究 被引量:1
18
作者 喻道远 罗飞 范良志 《中国医疗器械杂志》 CAS 2006年第4期241-244,共4页
针对高强度聚焦超声串并联机器人的硬件结构特点,插补算法采取了粗插补和精插补相结合的两级模式。为满足电机轴动态性能限制条件,同时采用了插补前加减速和插补后加减速的方法,并给出了插补算法的具体实现步骤。
关键词 串并联机器人 插补算法 PMAC(Programmable multi-axis Control)
下载PDF
基于可编程多轴控制器的红外传感器片上测试系统设计 被引量:1
19
作者 叶雨欣 焦斌斌 +2 位作者 孙灵芳 孔延梅 刘瑞文 《科学技术与工程》 北大核心 2014年第34期213-218,共6页
探针测试台是一种传统半导体工艺中间测试设备,用于在硅片划片前测试电子器件性能、良率,并给出其在晶圆上分布的映射图表。目前国内外自动或半自动探针测试台都是针对传统IC电路设计,采用封闭式结构,无法根据传感器多变的特性、复杂的... 探针测试台是一种传统半导体工艺中间测试设备,用于在硅片划片前测试电子器件性能、良率,并给出其在晶圆上分布的映射图表。目前国内外自动或半自动探针测试台都是针对传统IC电路设计,采用封闭式结构,无法根据传感器多变的特性、复杂的测试环境需求完成对器件的片上测试。采用美国Delta Tau公司推出的PMAC可编程多轴运动控制器作为核心控制系统,构建了一套针对红外热电堆器件特殊测试需求的批量化片上测试系统。该测试系统具有响应速度快、控制精度高、可扩展性强的特性,不仅可满足红外热电堆器件的片上批量化测试需求,还可通过定制性的模块删减以满足不同传感器的片上测试。 展开更多
关键词 可编程多轴控制器(programmable multi-axis controller PMAC) 自动探针台 开放式数控系统
下载PDF
圆形多轴多旋翼电动无人机辅助授粉作业参数优选 被引量:40
20
作者 李继宇 周志艳 +5 位作者 胡炼 臧英 徐赛 刘爱民 罗锡文 张铁民 《农业工程学报》 EI CAS CSCD 北大核心 2014年第11期1-9,共9页
圆形多轴多旋翼无人直升机与单轴单旋翼无人直升机相比,结构上有很大差异,因而其旋翼所产生气流到达作物冠层后形成的风场参数亦有所不同。该文采用3种圆形多轴多旋翼无人直升机,根据正交试验设计法设计了3因素(飞行高度、飞行速度以及... 圆形多轴多旋翼无人直升机与单轴单旋翼无人直升机相比,结构上有很大差异,因而其旋翼所产生气流到达作物冠层后形成的风场参数亦有所不同。该文采用3种圆形多轴多旋翼无人直升机,根据正交试验设计法设计了3因素(飞行高度、飞行速度以及飞机与负载质量)3水平的正交试验,通过考察平行于飞行方向(X)、垂直于飞行方向(Y)、垂直地面(Z)3个方向上的峰值风速、Y向风场宽度(越宽越好)、动力电池的压降(放电越慢越好)3个指标,对该机型用于水稻制种辅助授粉的田间作业参数进行优选,试验结果分析表明:圆形多轴多旋翼无人直升机在水稻冠层形成的X向风场宽度明显大于Y向的风场宽度;有别于单旋翼无人直升机,圆形多轴多旋翼无人直升机X向风场只有1个峰值风速中心,Y向风场存在2个峰值风速中心,这一现象主要由飞行器多个旋翼的侧向气流叠加形成,相互之间存在干扰,而且也影响了Y向风场的有效宽度。在实际应用中,对于能实现GPS自主导航飞行的机型,应根据作业的便利程度尽量利用X向的风力,更有益于辅助授粉作业;而对于未采用GPS自主导航飞行的机型,为便于飞控手对飞机位置的判断与姿态操控而必须沿父本行方向进行飞行作业时(即利用Y向风力),应充分考虑垂直于飞行方向风场宽度较窄的实际情况,通过降低作业效率来弥补。圆形多轴多旋翼无人直升机在水稻冠层所形成风场的峰值风速主要受飞机的飞行速度、飞机与负载质量、飞行高度影响。结合有效风场宽度及电池电量消耗程度来考量,3种主要因素的主次排序及其较优水平依次为飞行速度1.30 m/s、飞机与负载质量18.85 kg和飞行高度2.40 m。该结果可为其他圆形多轴多旋翼无人直升机用于水稻制种辅助授粉的田间作业参数设置提供参考,而且也可为制定基于农用无人直升机的水稻制种辅助授粉作业技术规范提供依据。 展开更多
关键词 无人机 测量 试验 多轴多旋翼 电池动力 极差分析 作业参数优选 正交试验
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部